Upload convert_million_songs_dataset.ipynb
Browse files
convert_million_songs_dataset.ipynb
ADDED
|
@@ -0,0 +1,489 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"see: http://millionsongdataset.com/pages/getting-dataset/#subset"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "code",
|
| 12 |
+
"execution_count": null,
|
| 13 |
+
"metadata": {},
|
| 14 |
+
"outputs": [],
|
| 15 |
+
"source": [
|
| 16 |
+
"# !wget http://labrosa.ee.columbia.edu/~dpwe/tmp/millionsongsubset.tar.gz\n",
|
| 17 |
+
"# !tar -xvzf millionsongsubset.tar.gz"
|
| 18 |
+
]
|
| 19 |
+
},
|
| 20 |
+
{
|
| 21 |
+
"cell_type": "code",
|
| 22 |
+
"execution_count": null,
|
| 23 |
+
"metadata": {},
|
| 24 |
+
"outputs": [],
|
| 25 |
+
"source": [
|
| 26 |
+
"# !pip install pandas h5py pyarrow fastparquet"
|
| 27 |
+
]
|
| 28 |
+
},
|
| 29 |
+
{
|
| 30 |
+
"cell_type": "code",
|
| 31 |
+
"execution_count": 2,
|
| 32 |
+
"metadata": {},
|
| 33 |
+
"outputs": [],
|
| 34 |
+
"source": [
|
| 35 |
+
"import os\n",
|
| 36 |
+
"import h5py\n",
|
| 37 |
+
"import pandas as pd\n",
|
| 38 |
+
"from tqdm.auto import tqdm\n",
|
| 39 |
+
"\n",
|
| 40 |
+
"import unibox as ub"
|
| 41 |
+
]
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"cell_type": "code",
|
| 45 |
+
"execution_count": null,
|
| 46 |
+
"metadata": {},
|
| 47 |
+
"outputs": [
|
| 48 |
+
{
|
| 49 |
+
"data": {
|
| 50 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 51 |
+
"model_id": "a7418816c46f4f5b95a8c7e307b6e569",
|
| 52 |
+
"version_major": 2,
|
| 53 |
+
"version_minor": 0
|
| 54 |
+
},
|
| 55 |
+
"text/plain": [
|
| 56 |
+
"Listing local files: 0files [00:00, ?files/s]"
|
| 57 |
+
]
|
| 58 |
+
},
|
| 59 |
+
"metadata": {},
|
| 60 |
+
"output_type": "display_data"
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
"data": {
|
| 64 |
+
"text/plain": [
|
| 65 |
+
"10000"
|
| 66 |
+
]
|
| 67 |
+
},
|
| 68 |
+
"execution_count": 4,
|
| 69 |
+
"metadata": {},
|
| 70 |
+
"output_type": "execute_result"
|
| 71 |
+
}
|
| 72 |
+
],
|
| 73 |
+
"source": [
|
| 74 |
+
"len(ub.ls(\"../data/MillionSongSubset\", [\".h5\"]))"
|
| 75 |
+
]
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"cell_type": "code",
|
| 79 |
+
"execution_count": 5,
|
| 80 |
+
"metadata": {},
|
| 81 |
+
"outputs": [
|
| 82 |
+
{
|
| 83 |
+
"name": "stderr",
|
| 84 |
+
"output_type": "stream",
|
| 85 |
+
"text": [
|
| 86 |
+
"100%|██████████| 10000/10000 [00:39<00:00, 250.36it/s]\n"
|
| 87 |
+
]
|
| 88 |
+
}
|
| 89 |
+
],
|
| 90 |
+
"source": [
|
| 91 |
+
"import os\n",
|
| 92 |
+
"import pandas as pd\n",
|
| 93 |
+
"import numpy as np\n",
|
| 94 |
+
"import hdf5_getters\n",
|
| 95 |
+
"import h5py\n",
|
| 96 |
+
"from tqdm import tqdm\n",
|
| 97 |
+
"from concurrent.futures import ProcessPoolExecutor\n",
|
| 98 |
+
"\n",
|
| 99 |
+
"# Define dataset path\n",
|
| 100 |
+
"dataset_path = \"/lv0/yada/dataproc5/data/MillionSongSubset\"\n",
|
| 101 |
+
"\n",
|
| 102 |
+
"# Function to extract all available fields from an HDF5 file\n",
|
| 103 |
+
"def extract_song_data(file_path):\n",
|
| 104 |
+
" \"\"\"Extracts all available fields from an HDF5 song file using hdf5_getters.\"\"\"\n",
|
| 105 |
+
" song_data = {}\n",
|
| 106 |
+
"\n",
|
| 107 |
+
" try:\n",
|
| 108 |
+
" with hdf5_getters.open_h5_file_read(file_path) as h5:\n",
|
| 109 |
+
" # Get all getter functions from hdf5_getters\n",
|
| 110 |
+
" getters = [func for func in dir(hdf5_getters) if func.startswith(\"get_\")]\n",
|
| 111 |
+
"\n",
|
| 112 |
+
" for getter in getters:\n",
|
| 113 |
+
" try:\n",
|
| 114 |
+
" # Dynamically call each getter function\n",
|
| 115 |
+
" value = getattr(hdf5_getters, getter)(h5)\n",
|
| 116 |
+
"\n",
|
| 117 |
+
" # Optimize conversions\n",
|
| 118 |
+
" if isinstance(value, np.ndarray):\n",
|
| 119 |
+
" value = value.tolist()\n",
|
| 120 |
+
" elif isinstance(value, bytes):\n",
|
| 121 |
+
" value = value.decode()\n",
|
| 122 |
+
"\n",
|
| 123 |
+
" # Store in dictionary with a cleaned-up key name\n",
|
| 124 |
+
" song_data[getter[4:]] = value\n",
|
| 125 |
+
"\n",
|
| 126 |
+
" except Exception:\n",
|
| 127 |
+
" continue # Skip errors but don't slow down\n",
|
| 128 |
+
"\n",
|
| 129 |
+
" except Exception as e:\n",
|
| 130 |
+
" print(f\"Error processing {file_path}: {e}\")\n",
|
| 131 |
+
" \n",
|
| 132 |
+
" return song_data\n",
|
| 133 |
+
"\n",
|
| 134 |
+
"# Function to process multiple files in parallel\n",
|
| 135 |
+
"def process_files_in_parallel(h5_files, num_workers=8):\n",
|
| 136 |
+
" \"\"\"Processes multiple .h5 files in parallel.\"\"\"\n",
|
| 137 |
+
" all_songs = []\n",
|
| 138 |
+
"\n",
|
| 139 |
+
" with ProcessPoolExecutor(max_workers=num_workers) as executor:\n",
|
| 140 |
+
" for song_data in tqdm(executor.map(extract_song_data, h5_files), total=len(h5_files)):\n",
|
| 141 |
+
" if song_data:\n",
|
| 142 |
+
" all_songs.append(song_data)\n",
|
| 143 |
+
" \n",
|
| 144 |
+
" return all_songs\n",
|
| 145 |
+
"\n",
|
| 146 |
+
"# Find all .h5 files\n",
|
| 147 |
+
"h5_files = [os.path.join(root, file) for root, _, files in os.walk(dataset_path) for file in files if file.endswith(\".h5\")]\n",
|
| 148 |
+
"\n",
|
| 149 |
+
"# Process files in parallel\n",
|
| 150 |
+
"all_songs = process_files_in_parallel(h5_files, num_workers=24)\n",
|
| 151 |
+
"\n",
|
| 152 |
+
"# Convert to Pandas DataFrame\n",
|
| 153 |
+
"df = pd.DataFrame(all_songs)"
|
| 154 |
+
]
|
| 155 |
+
},
|
| 156 |
+
{
|
| 157 |
+
"cell_type": "code",
|
| 158 |
+
"execution_count": 9,
|
| 159 |
+
"metadata": {},
|
| 160 |
+
"outputs": [
|
| 161 |
+
{
|
| 162 |
+
"name": "stdout",
|
| 163 |
+
"output_type": "stream",
|
| 164 |
+
"text": [
|
| 165 |
+
"(10000, 55)\n",
|
| 166 |
+
"Index(['analysis_sample_rate', 'artist_7digitalid', 'artist_familiarity',\n",
|
| 167 |
+
" 'artist_hotttnesss', 'artist_id', 'artist_latitude', 'artist_location',\n",
|
| 168 |
+
" 'artist_longitude', 'artist_mbid', 'artist_mbtags',\n",
|
| 169 |
+
" 'artist_mbtags_count', 'artist_name', 'artist_playmeid', 'artist_terms',\n",
|
| 170 |
+
" 'artist_terms_freq', 'artist_terms_weight', 'audio_md5',\n",
|
| 171 |
+
" 'bars_confidence', 'bars_start', 'beats_confidence', 'beats_start',\n",
|
| 172 |
+
" 'danceability', 'duration', 'end_of_fade_in', 'energy', 'key',\n",
|
| 173 |
+
" 'key_confidence', 'loudness', 'mode', 'mode_confidence', 'num_songs',\n",
|
| 174 |
+
" 'release', 'release_7digitalid', 'sections_confidence',\n",
|
| 175 |
+
" 'sections_start', 'segments_confidence', 'segments_loudness_max',\n",
|
| 176 |
+
" 'segments_loudness_max_time', 'segments_loudness_start',\n",
|
| 177 |
+
" 'segments_pitches', 'segments_start', 'segments_timbre',\n",
|
| 178 |
+
" 'similar_artists', 'song_hotttnesss', 'song_id', 'start_of_fade_out',\n",
|
| 179 |
+
" 'tatums_confidence', 'tatums_start', 'tempo', 'time_signature',\n",
|
| 180 |
+
" 'time_signature_confidence', 'title', 'track_7digitalid', 'track_id',\n",
|
| 181 |
+
" 'year'],\n",
|
| 182 |
+
" dtype='object')\n"
|
| 183 |
+
]
|
| 184 |
+
},
|
| 185 |
+
{
|
| 186 |
+
"data": {
|
| 187 |
+
"text/html": [
|
| 188 |
+
"<div>\n",
|
| 189 |
+
"<style scoped>\n",
|
| 190 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 191 |
+
" vertical-align: middle;\n",
|
| 192 |
+
" }\n",
|
| 193 |
+
"\n",
|
| 194 |
+
" .dataframe tbody tr th {\n",
|
| 195 |
+
" vertical-align: top;\n",
|
| 196 |
+
" }\n",
|
| 197 |
+
"\n",
|
| 198 |
+
" .dataframe thead th {\n",
|
| 199 |
+
" text-align: right;\n",
|
| 200 |
+
" }\n",
|
| 201 |
+
"</style>\n",
|
| 202 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 203 |
+
" <thead>\n",
|
| 204 |
+
" <tr style=\"text-align: right;\">\n",
|
| 205 |
+
" <th></th>\n",
|
| 206 |
+
" <th>analysis_sample_rate</th>\n",
|
| 207 |
+
" <th>artist_7digitalid</th>\n",
|
| 208 |
+
" <th>artist_familiarity</th>\n",
|
| 209 |
+
" <th>artist_hotttnesss</th>\n",
|
| 210 |
+
" <th>artist_id</th>\n",
|
| 211 |
+
" <th>artist_latitude</th>\n",
|
| 212 |
+
" <th>artist_location</th>\n",
|
| 213 |
+
" <th>artist_longitude</th>\n",
|
| 214 |
+
" <th>artist_mbid</th>\n",
|
| 215 |
+
" <th>artist_mbtags</th>\n",
|
| 216 |
+
" <th>...</th>\n",
|
| 217 |
+
" <th>start_of_fade_out</th>\n",
|
| 218 |
+
" <th>tatums_confidence</th>\n",
|
| 219 |
+
" <th>tatums_start</th>\n",
|
| 220 |
+
" <th>tempo</th>\n",
|
| 221 |
+
" <th>time_signature</th>\n",
|
| 222 |
+
" <th>time_signature_confidence</th>\n",
|
| 223 |
+
" <th>title</th>\n",
|
| 224 |
+
" <th>track_7digitalid</th>\n",
|
| 225 |
+
" <th>track_id</th>\n",
|
| 226 |
+
" <th>year</th>\n",
|
| 227 |
+
" </tr>\n",
|
| 228 |
+
" </thead>\n",
|
| 229 |
+
" <tbody>\n",
|
| 230 |
+
" <tr>\n",
|
| 231 |
+
" <th>0</th>\n",
|
| 232 |
+
" <td>22050</td>\n",
|
| 233 |
+
" <td>174717</td>\n",
|
| 234 |
+
" <td>0.450743</td>\n",
|
| 235 |
+
" <td>0.331215</td>\n",
|
| 236 |
+
" <td>AR1DGSO1187FB59B15</td>\n",
|
| 237 |
+
" <td>NaN</td>\n",
|
| 238 |
+
" <td></td>\n",
|
| 239 |
+
" <td>NaN</td>\n",
|
| 240 |
+
" <td>fe4e71a9-ddb9-47b5-9e2e-ec53862a91c6</td>\n",
|
| 241 |
+
" <td>[]</td>\n",
|
| 242 |
+
" <td>...</td>\n",
|
| 243 |
+
" <td>266.879</td>\n",
|
| 244 |
+
" <td>[0.0, 0.0, 0.896, 0.819, 0.664, 0.693, 0.67, 0...</td>\n",
|
| 245 |
+
" <td>[0.16738, 0.44887, 0.73036, 1.09072, 1.44407, ...</td>\n",
|
| 246 |
+
" <td>107.053</td>\n",
|
| 247 |
+
" <td>4</td>\n",
|
| 248 |
+
" <td>0.657</td>\n",
|
| 249 |
+
" <td>Jody</td>\n",
|
| 250 |
+
" <td>2555900</td>\n",
|
| 251 |
+
" <td>TRAHHUN128F4227029</td>\n",
|
| 252 |
+
" <td>0</td>\n",
|
| 253 |
+
" </tr>\n",
|
| 254 |
+
" <tr>\n",
|
| 255 |
+
" <th>1</th>\n",
|
| 256 |
+
" <td>22050</td>\n",
|
| 257 |
+
" <td>7173</td>\n",
|
| 258 |
+
" <td>0.392710</td>\n",
|
| 259 |
+
" <td>0.311789</td>\n",
|
| 260 |
+
" <td>ARO6WZY1187FB3A86E</td>\n",
|
| 261 |
+
" <td>NaN</td>\n",
|
| 262 |
+
" <td></td>\n",
|
| 263 |
+
" <td>NaN</td>\n",
|
| 264 |
+
" <td>23f7ad3f-a189-4a1c-9991-4763ded495a7</td>\n",
|
| 265 |
+
" <td>[]</td>\n",
|
| 266 |
+
" <td>...</td>\n",
|
| 267 |
+
" <td>321.300</td>\n",
|
| 268 |
+
" <td>[0.451, 0.426, 0.396, 0.32, 0.255, 0.204, 0.15...</td>\n",
|
| 269 |
+
" <td>[0.05024, 0.25641, 0.46357, 0.66974, 0.87691, ...</td>\n",
|
| 270 |
+
" <td>149.853</td>\n",
|
| 271 |
+
" <td>3</td>\n",
|
| 272 |
+
" <td>1.000</td>\n",
|
| 273 |
+
" <td>Turntable Terrorist</td>\n",
|
| 274 |
+
" <td>5591259</td>\n",
|
| 275 |
+
" <td>TRAHHMM128F932D5D9</td>\n",
|
| 276 |
+
" <td>1995</td>\n",
|
| 277 |
+
" </tr>\n",
|
| 278 |
+
" <tr>\n",
|
| 279 |
+
" <th>2</th>\n",
|
| 280 |
+
" <td>22050</td>\n",
|
| 281 |
+
" <td>2759</td>\n",
|
| 282 |
+
" <td>0.602767</td>\n",
|
| 283 |
+
" <td>0.463193</td>\n",
|
| 284 |
+
" <td>ARH1LE01187B98D68D</td>\n",
|
| 285 |
+
" <td>NaN</td>\n",
|
| 286 |
+
" <td></td>\n",
|
| 287 |
+
" <td>NaN</td>\n",
|
| 288 |
+
" <td>3df3a779-a7b1-4362-a8b4-9ae6c7eb623d</td>\n",
|
| 289 |
+
" <td>[b'american', b'soundtrack']</td>\n",
|
| 290 |
+
" <td>...</td>\n",
|
| 291 |
+
" <td>67.895</td>\n",
|
| 292 |
+
" <td>[0.056, 0.058, 0.056, 0.059, 0.097, 0.093, 0.0...</td>\n",
|
| 293 |
+
" <td>[0.54095, 0.86496, 1.20205, 1.52933, 1.85662, ...</td>\n",
|
| 294 |
+
" <td>91.249</td>\n",
|
| 295 |
+
" <td>4</td>\n",
|
| 296 |
+
" <td>0.568</td>\n",
|
| 297 |
+
" <td>Porcelain Man</td>\n",
|
| 298 |
+
" <td>7341937</td>\n",
|
| 299 |
+
" <td>TRAHHJY12903CA73BD</td>\n",
|
| 300 |
+
" <td>1999</td>\n",
|
| 301 |
+
" </tr>\n",
|
| 302 |
+
" </tbody>\n",
|
| 303 |
+
"</table>\n",
|
| 304 |
+
"<p>3 rows × 55 columns</p>\n",
|
| 305 |
+
"</div>"
|
| 306 |
+
],
|
| 307 |
+
"text/plain": [
|
| 308 |
+
" analysis_sample_rate artist_7digitalid artist_familiarity \\\n",
|
| 309 |
+
"0 22050 174717 0.450743 \n",
|
| 310 |
+
"1 22050 7173 0.392710 \n",
|
| 311 |
+
"2 22050 2759 0.602767 \n",
|
| 312 |
+
"\n",
|
| 313 |
+
" artist_hotttnesss artist_id artist_latitude artist_location \\\n",
|
| 314 |
+
"0 0.331215 AR1DGSO1187FB59B15 NaN \n",
|
| 315 |
+
"1 0.311789 ARO6WZY1187FB3A86E NaN \n",
|
| 316 |
+
"2 0.463193 ARH1LE01187B98D68D NaN \n",
|
| 317 |
+
"\n",
|
| 318 |
+
" artist_longitude artist_mbid \\\n",
|
| 319 |
+
"0 NaN fe4e71a9-ddb9-47b5-9e2e-ec53862a91c6 \n",
|
| 320 |
+
"1 NaN 23f7ad3f-a189-4a1c-9991-4763ded495a7 \n",
|
| 321 |
+
"2 NaN 3df3a779-a7b1-4362-a8b4-9ae6c7eb623d \n",
|
| 322 |
+
"\n",
|
| 323 |
+
" artist_mbtags ... start_of_fade_out \\\n",
|
| 324 |
+
"0 [] ... 266.879 \n",
|
| 325 |
+
"1 [] ... 321.300 \n",
|
| 326 |
+
"2 [b'american', b'soundtrack'] ... 67.895 \n",
|
| 327 |
+
"\n",
|
| 328 |
+
" tatums_confidence \\\n",
|
| 329 |
+
"0 [0.0, 0.0, 0.896, 0.819, 0.664, 0.693, 0.67, 0... \n",
|
| 330 |
+
"1 [0.451, 0.426, 0.396, 0.32, 0.255, 0.204, 0.15... \n",
|
| 331 |
+
"2 [0.056, 0.058, 0.056, 0.059, 0.097, 0.093, 0.0... \n",
|
| 332 |
+
"\n",
|
| 333 |
+
" tatums_start tempo time_signature \\\n",
|
| 334 |
+
"0 [0.16738, 0.44887, 0.73036, 1.09072, 1.44407, ... 107.053 4 \n",
|
| 335 |
+
"1 [0.05024, 0.25641, 0.46357, 0.66974, 0.87691, ... 149.853 3 \n",
|
| 336 |
+
"2 [0.54095, 0.86496, 1.20205, 1.52933, 1.85662, ... 91.249 4 \n",
|
| 337 |
+
"\n",
|
| 338 |
+
" time_signature_confidence title track_7digitalid \\\n",
|
| 339 |
+
"0 0.657 Jody 2555900 \n",
|
| 340 |
+
"1 1.000 Turntable Terrorist 5591259 \n",
|
| 341 |
+
"2 0.568 Porcelain Man 7341937 \n",
|
| 342 |
+
"\n",
|
| 343 |
+
" track_id year \n",
|
| 344 |
+
"0 TRAHHUN128F4227029 0 \n",
|
| 345 |
+
"1 TRAHHMM128F932D5D9 1995 \n",
|
| 346 |
+
"2 TRAHHJY12903CA73BD 1999 \n",
|
| 347 |
+
"\n",
|
| 348 |
+
"[3 rows x 55 columns]"
|
| 349 |
+
]
|
| 350 |
+
},
|
| 351 |
+
"metadata": {},
|
| 352 |
+
"output_type": "display_data"
|
| 353 |
+
}
|
| 354 |
+
],
|
| 355 |
+
"source": [
|
| 356 |
+
"ub.peeks(df)"
|
| 357 |
+
]
|
| 358 |
+
},
|
| 359 |
+
{
|
| 360 |
+
"cell_type": "code",
|
| 361 |
+
"execution_count": 8,
|
| 362 |
+
"metadata": {},
|
| 363 |
+
"outputs": [
|
| 364 |
+
{
|
| 365 |
+
"name": "stdout",
|
| 366 |
+
"output_type": "stream",
|
| 367 |
+
"text": [
|
| 368 |
+
"\u001b[37m2025-02-19 14:01:45 [INFO] HuggingFaceDatasetsBackend.data_to_hub: Uploading dataset to HF repo trojblue/million-song-subset\u001b[0m\n"
|
| 369 |
+
]
|
| 370 |
+
},
|
| 371 |
+
{
|
| 372 |
+
"data": {
|
| 373 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 374 |
+
"model_id": "c6e47a2259e54cb19dc37e6762883cbc",
|
| 375 |
+
"version_major": 2,
|
| 376 |
+
"version_minor": 0
|
| 377 |
+
},
|
| 378 |
+
"text/plain": [
|
| 379 |
+
"Uploading the dataset shards: 0%| | 0/5 [00:00<?, ?it/s]"
|
| 380 |
+
]
|
| 381 |
+
},
|
| 382 |
+
"metadata": {},
|
| 383 |
+
"output_type": "display_data"
|
| 384 |
+
},
|
| 385 |
+
{
|
| 386 |
+
"data": {
|
| 387 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 388 |
+
"model_id": "f69f061bad16497ca9f9bac1ab4500c2",
|
| 389 |
+
"version_major": 2,
|
| 390 |
+
"version_minor": 0
|
| 391 |
+
},
|
| 392 |
+
"text/plain": [
|
| 393 |
+
"Creating parquet from Arrow format: 0%| | 0/20 [00:00<?, ?ba/s]"
|
| 394 |
+
]
|
| 395 |
+
},
|
| 396 |
+
"metadata": {},
|
| 397 |
+
"output_type": "display_data"
|
| 398 |
+
},
|
| 399 |
+
{
|
| 400 |
+
"data": {
|
| 401 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 402 |
+
"model_id": "1d998490521645edb6d4e462de6045f4",
|
| 403 |
+
"version_major": 2,
|
| 404 |
+
"version_minor": 0
|
| 405 |
+
},
|
| 406 |
+
"text/plain": [
|
| 407 |
+
"Creating parquet from Arrow format: 0%| | 0/20 [00:00<?, ?ba/s]"
|
| 408 |
+
]
|
| 409 |
+
},
|
| 410 |
+
"metadata": {},
|
| 411 |
+
"output_type": "display_data"
|
| 412 |
+
},
|
| 413 |
+
{
|
| 414 |
+
"data": {
|
| 415 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 416 |
+
"model_id": "389e657da20c4a3c8e18899e57642b96",
|
| 417 |
+
"version_major": 2,
|
| 418 |
+
"version_minor": 0
|
| 419 |
+
},
|
| 420 |
+
"text/plain": [
|
| 421 |
+
"Creating parquet from Arrow format: 0%| | 0/20 [00:00<?, ?ba/s]"
|
| 422 |
+
]
|
| 423 |
+
},
|
| 424 |
+
"metadata": {},
|
| 425 |
+
"output_type": "display_data"
|
| 426 |
+
},
|
| 427 |
+
{
|
| 428 |
+
"data": {
|
| 429 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 430 |
+
"model_id": "767913f1d6134a888edea631657fce58",
|
| 431 |
+
"version_major": 2,
|
| 432 |
+
"version_minor": 0
|
| 433 |
+
},
|
| 434 |
+
"text/plain": [
|
| 435 |
+
"Creating parquet from Arrow format: 0%| | 0/20 [00:00<?, ?ba/s]"
|
| 436 |
+
]
|
| 437 |
+
},
|
| 438 |
+
"metadata": {},
|
| 439 |
+
"output_type": "display_data"
|
| 440 |
+
},
|
| 441 |
+
{
|
| 442 |
+
"data": {
|
| 443 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 444 |
+
"model_id": "b59fd321ef98408880ec22deb55498c6",
|
| 445 |
+
"version_major": 2,
|
| 446 |
+
"version_minor": 0
|
| 447 |
+
},
|
| 448 |
+
"text/plain": [
|
| 449 |
+
"Creating parquet from Arrow format: 0%| | 0/20 [00:00<?, ?ba/s]"
|
| 450 |
+
]
|
| 451 |
+
},
|
| 452 |
+
"metadata": {},
|
| 453 |
+
"output_type": "display_data"
|
| 454 |
+
},
|
| 455 |
+
{
|
| 456 |
+
"name": "stdout",
|
| 457 |
+
"output_type": "stream",
|
| 458 |
+
"text": [
|
| 459 |
+
"\u001b[37m2025-02-19 14:02:47 [INFO] saves: DataFrame saved (HF dataset) to \"hf://trojblue/million-song-subset\" in 62.75s\u001b[0m\n"
|
| 460 |
+
]
|
| 461 |
+
}
|
| 462 |
+
],
|
| 463 |
+
"source": [
|
| 464 |
+
"ub.saves(df, \"hf://trojblue/million-song-subset\", private=False)"
|
| 465 |
+
]
|
| 466 |
+
}
|
| 467 |
+
],
|
| 468 |
+
"metadata": {
|
| 469 |
+
"kernelspec": {
|
| 470 |
+
"display_name": "base",
|
| 471 |
+
"language": "python",
|
| 472 |
+
"name": "python3"
|
| 473 |
+
},
|
| 474 |
+
"language_info": {
|
| 475 |
+
"codemirror_mode": {
|
| 476 |
+
"name": "ipython",
|
| 477 |
+
"version": 3
|
| 478 |
+
},
|
| 479 |
+
"file_extension": ".py",
|
| 480 |
+
"mimetype": "text/x-python",
|
| 481 |
+
"name": "python",
|
| 482 |
+
"nbconvert_exporter": "python",
|
| 483 |
+
"pygments_lexer": "ipython3",
|
| 484 |
+
"version": "3.10.16"
|
| 485 |
+
}
|
| 486 |
+
},
|
| 487 |
+
"nbformat": 4,
|
| 488 |
+
"nbformat_minor": 2
|
| 489 |
+
}
|