--- dataset_info: features: - name: analysis_sample_rate dtype: int32 - name: artist_7digitalid dtype: int32 - name: artist_familiarity dtype: float64 - name: artist_hotttnesss dtype: float64 - name: artist_id dtype: string - name: artist_latitude dtype: float64 - name: artist_location dtype: string - name: artist_longitude dtype: float64 - name: artist_mbid dtype: string - name: artist_mbtags sequence: binary - name: artist_mbtags_count sequence: int64 - name: artist_name dtype: string - name: artist_playmeid dtype: int32 - name: artist_terms sequence: binary - name: artist_terms_freq sequence: float64 - name: artist_terms_weight sequence: float64 - name: audio_md5 dtype: string - name: bars_confidence sequence: float64 - name: bars_start sequence: float64 - name: beats_confidence sequence: float64 - name: beats_start sequence: float64 - name: danceability dtype: float64 - name: duration dtype: float64 - name: end_of_fade_in dtype: float64 - name: energy dtype: float64 - name: key dtype: int32 - name: key_confidence dtype: float64 - name: loudness dtype: float64 - name: mode dtype: int32 - name: mode_confidence dtype: float64 - name: num_songs dtype: int64 - name: release dtype: string - name: release_7digitalid dtype: int32 - name: sections_confidence sequence: float64 - name: sections_start sequence: float64 - name: segments_confidence sequence: float64 - name: segments_loudness_max sequence: float64 - name: segments_loudness_max_time sequence: float64 - name: segments_loudness_start sequence: float64 - name: segments_pitches sequence: sequence: float64 - name: segments_start sequence: float64 - name: segments_timbre sequence: sequence: float64 - name: similar_artists sequence: binary - name: song_hotttnesss dtype: float64 - name: song_id dtype: string - name: start_of_fade_out dtype: float64 - name: tatums_confidence sequence: float64 - name: tatums_start sequence: float64 - name: tempo dtype: float64 - name: time_signature dtype: int32 - name: time_signature_confidence dtype: float64 - name: title dtype: string - name: track_7digitalid dtype: int32 - name: track_id dtype: string - name: year dtype: int32 splits: - name: train num_bytes: 2365768621 num_examples: 10000 download_size: 1041881893 dataset_size: 2365768621 configs: - config_name: default data_files: - split: train path: data/train-* --- # Million Song Subset (Processed Version) ## Overview This dataset is a structured extraction of the [Million Song Subset](http://millionsongdataset.com/pages/getting-dataset/#subset), derived from HDF5 files into a tabular format for easier accessibility and analysis. ## Source - Original dataset: **Million Song Dataset** (LabROSA, Columbia University & The Echo Nest) - Subset used: **Million Song Subset** (10,000 songs) - URL: [http://millionsongdataset.com](http://millionsongdataset.com) ## Processing Steps 1. **Extraction**: Used `hdf5_getters.py` to retrieve all available fields. 2. **Parallel Processing**: Optimized extraction with `ProcessPoolExecutor` for speed. 3. **Conversion**: Structured into a Pandas DataFrame. 4. **Storage**: Saved as a Parquet file for efficient usage. ## Format - **Columns**: Contains all available attributes from the original dataset, including artist metadata, song features, and audio analysis. - **File Format**: Parquet (optimized for efficient querying & storage). ## Usage - Load the dataset with Datasets: ```python from datasets import load_dataset ds = load_dataset("trojblue/million-song-subset") ``` - Explore and analyze various musical attributes easily. ## License - **Original License**: Refer to the [Million Song Dataset license](http://millionsongdataset.com/pages/terms-of-use/) - **Processed Version**: Shared for research and non-commercial purposes. For more details, visit the [Million Song Dataset website](http://millionsongdataset.com). ## Appendix: Processing Code The dataset was converted using the following snippet: ```python import os import unibox as ub import pandas as pd import numpy as np import h5py from tqdm import tqdm from concurrent.futures import ProcessPoolExecutor # https://github.com/tbertinmahieux/MSongsDB/blob/0c276e289606d5bd6f3991f713e7e9b1d4384e44/PythonSrc/hdf5_getters.py import hdf5_getters # Define dataset path dataset_path = "/lv0/yada/dataproc5/data/MillionSongSubset" # Function to extract all available fields from an HDF5 file def extract_song_data(file_path): """Extracts all available fields from an HDF5 song file using hdf5_getters.""" song_data = {} try: with hdf5_getters.open_h5_file_read(file_path) as h5: # Get all getter functions from hdf5_getters getters = [func for func in dir(hdf5_getters) if func.startswith("get_")] for getter in getters: try: # Dynamically call each getter function value = getattr(hdf5_getters, getter)(h5) # Optimize conversions if isinstance(value, np.ndarray): value = value.tolist() elif isinstance(value, bytes): value = value.decode() # Store in dictionary with a cleaned-up key name song_data[getter[4:]] = value except Exception: continue # Skip errors but don't slow down except Exception as e: print(f"Error processing {file_path}: {e}") return song_data # Function to process multiple files in parallel def process_files_in_parallel(h5_files, num_workers=8): """Processes multiple .h5 files in parallel.""" all_songs = [] with ProcessPoolExecutor(max_workers=num_workers) as executor: for song_data in tqdm(executor.map(extract_song_data, h5_files), total=len(h5_files)): if song_data: all_songs.append(song_data) return all_songs # Find all .h5 files h5_files = [os.path.join(root, file) for root, _, files in os.walk(dataset_path) for file in files if file.endswith(".h5")] # Process files in parallel all_songs = process_files_in_parallel(h5_files, num_workers=24) # Convert to Pandas DataFrame df = pd.DataFrame(all_songs) ub.saves(df, "hf://trojblue/million-song-subset", private=False) ```