Update vlm-projects-multi-lang-final.py
Browse files- vlm-projects-multi-lang-final.py +58 -14
vlm-projects-multi-lang-final.py
CHANGED
@@ -1,14 +1,18 @@
|
|
1 |
-
|
2 |
-
import datasets
|
3 |
import os
|
4 |
import pandas as pd
|
|
|
5 |
|
6 |
_DESCRIPTION = "A multilingual medical imaging dataset with questions and answers, structured by language."
|
7 |
_HOMEPAGE = "https://huggingface.co/datasets/tungvu3196/vlm-projects-multi-lang-final"
|
8 |
_LICENSE = "apache-2.0"
|
9 |
-
_CITATION = ""
|
10 |
|
11 |
-
LANGUAGES = [
|
|
|
|
|
|
|
|
|
12 |
|
13 |
class VlmProjectsMultiLangFinal(datasets.GeneratorBasedBuilder):
|
14 |
BUILDER_CONFIGS = [
|
@@ -21,33 +25,73 @@ class VlmProjectsMultiLangFinal(datasets.GeneratorBasedBuilder):
|
|
21 |
]
|
22 |
|
23 |
def _info(self):
|
24 |
-
# Use the exact features we extracted from the Parquet file
|
25 |
return datasets.DatasetInfo(
|
26 |
description=_DESCRIPTION,
|
27 |
-
features={'A1': Value('string'), 'A2': Value('string'), 'A3': Value('string'), 'A4': Value('string'), 'Bbox coordinates normalized (X, Y, W, H)': Value('string'), 'Column 9': Value('float64'), 'Deliverable': Value('string'), 'Doctor': Value('string'), 'Google Drive Link': Value('string'), 'No.': Value('int64'), 'Notes': Value('string'), 'Original': Value('string'), 'Patient ID': Value('string'), 'Q1': Value('string'), 'Q2': Value('string'), 'Q3': Value('string'), 'Q4': Value('string'), 'Remove Status': Value('string'), 'Slide': Value('string'), 'Start date': Value('float64'), 'Status': Value('string'), '__index_level_0__': Value('int64'), 'image': Image(mode=None, decode=True), 'image_with_bboxes': Image(mode=None, decode=True), 'rotated_link': Value('string')},
|
28 |
homepage=_HOMEPAGE,
|
29 |
license=_LICENSE,
|
30 |
citation=_CITATION,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
)
|
32 |
|
33 |
def _split_generators(self, dl_manager):
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
return [
|
39 |
datasets.SplitGenerator(
|
40 |
name=datasets.Split.TRAIN,
|
41 |
-
gen_kwargs={"filepath": os.path.join(
|
|
|
42 |
),
|
43 |
datasets.SplitGenerator(
|
44 |
name=datasets.Split.TEST,
|
45 |
-
gen_kwargs={"filepath": os.path.join(
|
|
|
46 |
),
|
47 |
]
|
48 |
|
49 |
-
def _generate_examples(self, filepath):
|
|
|
50 |
df = pd.read_parquet(filepath)
|
|
|
51 |
for i, row in df.iterrows():
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
|
|
|
1 |
+
# dataset.py
|
|
|
2 |
import os
|
3 |
import pandas as pd
|
4 |
+
import datasets
|
5 |
|
6 |
_DESCRIPTION = "A multilingual medical imaging dataset with questions and answers, structured by language."
|
7 |
_HOMEPAGE = "https://huggingface.co/datasets/tungvu3196/vlm-projects-multi-lang-final"
|
8 |
_LICENSE = "apache-2.0"
|
9 |
+
_CITATION = ""
|
10 |
|
11 |
+
LANGUAGES = [
|
12 |
+
"English","Vietnamese","French","German","Spanish","Russian","Korean",
|
13 |
+
"Mandarin","Japanese","Thai","Indonesian","Malay","Arabic","Hindi",
|
14 |
+
"Turkish","Portuguese"
|
15 |
+
]
|
16 |
|
17 |
class VlmProjectsMultiLangFinal(datasets.GeneratorBasedBuilder):
|
18 |
BUILDER_CONFIGS = [
|
|
|
25 |
]
|
26 |
|
27 |
def _info(self):
|
|
|
28 |
return datasets.DatasetInfo(
|
29 |
description=_DESCRIPTION,
|
|
|
30 |
homepage=_HOMEPAGE,
|
31 |
license=_LICENSE,
|
32 |
citation=_CITATION,
|
33 |
+
features=datasets.Features({
|
34 |
+
"A1": datasets.Value("string"),
|
35 |
+
"A2": datasets.Value("string"),
|
36 |
+
"A3": datasets.Value("string"),
|
37 |
+
"A4": datasets.Value("string"),
|
38 |
+
"Bbox coordinates normalized (X, Y, W, H)": datasets.Value("string"),
|
39 |
+
"Column 9": datasets.Value("float64"),
|
40 |
+
"Deliverable": datasets.Value("string"),
|
41 |
+
"Doctor": datasets.Value("string"),
|
42 |
+
"Google Drive Link": datasets.Value("string"),
|
43 |
+
"No.": datasets.Value("int64"),
|
44 |
+
"Notes": datasets.Value("string"),
|
45 |
+
"Original": datasets.Value("string"),
|
46 |
+
"Patient ID": datasets.Value("string"),
|
47 |
+
"Q1": datasets.Value("string"),
|
48 |
+
"Q2": datasets.Value("string"),
|
49 |
+
"Q3": datasets.Value("string"),
|
50 |
+
"Q4": datasets.Value("string"),
|
51 |
+
"Remove Status": datasets.Value("string"),
|
52 |
+
"Slide": datasets.Value("string"),
|
53 |
+
"Start date": datasets.Value("float64"),
|
54 |
+
"Status": datasets.Value("string"),
|
55 |
+
"__index_level_0__": datasets.Value("int64"),
|
56 |
+
# These two will render in the Viewer if the underlying files exist in the repo:
|
57 |
+
"image": datasets.Image(), # path or dict -> file in repo
|
58 |
+
"image_with_bboxes": datasets.Image(),
|
59 |
+
# keep as string/URL if it's not a local file:
|
60 |
+
"rotated_link": datasets.Value("string"),
|
61 |
+
}),
|
62 |
)
|
63 |
|
64 |
def _split_generators(self, dl_manager):
|
65 |
+
# Map config name ("English") to folder ("english")
|
66 |
+
lang_dir = self.config.name.lower()
|
67 |
+
base = os.path.join(self.config.data_dir or "data", lang_dir)
|
|
|
68 |
return [
|
69 |
datasets.SplitGenerator(
|
70 |
name=datasets.Split.TRAIN,
|
71 |
+
gen_kwargs={"filepath": os.path.join(base, "train.parquet"),
|
72 |
+
"base_dir": base},
|
73 |
),
|
74 |
datasets.SplitGenerator(
|
75 |
name=datasets.Split.TEST,
|
76 |
+
gen_kwargs={"filepath": os.path.join(base, "test.parquet"),
|
77 |
+
"base_dir": base},
|
78 |
),
|
79 |
]
|
80 |
|
81 |
+
def _generate_examples(self, filepath, base_dir):
|
82 |
+
# Read parquet produced by your pipeline
|
83 |
df = pd.read_parquet(filepath)
|
84 |
+
|
85 |
for i, row in df.iterrows():
|
86 |
+
ex = row.to_dict()
|
87 |
+
|
88 |
+
# If parquet stored relative paths like "images/xyz.png", keep them relative to repo:
|
89 |
+
for col in ("image", "image_with_bboxes"):
|
90 |
+
p = ex.get(col)
|
91 |
+
if isinstance(p, str) and len(p):
|
92 |
+
# If the path isn't an URL, make it relative to the dataset files
|
93 |
+
if not (p.startswith("http://") or p.startswith("https://")):
|
94 |
+
ex[col] = os.path.join(base_dir, p).replace("\\", "/")
|
95 |
+
# if it *is* a URL, leave as-is (Image will try to download)
|
96 |
|
97 |
+
yield i, ex
|