Datasets:
Size:
10K<n<100K
License:
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pretty_name: "Multi-EuP v2: European Parliament Debates with MEP Metadata (24 languages)"
|
3 |
+
dataset_name: multi-eup-v2
|
4 |
+
configs:
|
5 |
+
- config_name: default
|
6 |
+
data_files: "clean_all_with_did_qid.MEP.csv"
|
7 |
+
license: cc-by-4.0
|
8 |
+
multilinguality: multilingual
|
9 |
+
task_categories:
|
10 |
+
- text-classification
|
11 |
+
- text-retrieval
|
12 |
+
- text-generation
|
13 |
+
language:
|
14 |
+
- bg
|
15 |
+
- cs
|
16 |
+
- da
|
17 |
+
- de
|
18 |
+
- el
|
19 |
+
- en
|
20 |
+
- es
|
21 |
+
- et
|
22 |
+
- fi
|
23 |
+
- fr
|
24 |
+
- ga
|
25 |
+
- hr
|
26 |
+
- hu
|
27 |
+
- it
|
28 |
+
- lt
|
29 |
+
- lv
|
30 |
+
- mt
|
31 |
+
- nl
|
32 |
+
- pl
|
33 |
+
- pt
|
34 |
+
- ro
|
35 |
+
- sk
|
36 |
+
- sl
|
37 |
+
- sv
|
38 |
+
size_categories:
|
39 |
+
- 10K<n<100K
|
40 |
+
homepage: ""
|
41 |
+
repository: ""
|
42 |
+
paper: "https://aclanthology.org/2024.mrl-1.23/"
|
43 |
+
tags:
|
44 |
+
- multilingual
|
45 |
+
- european-parliament
|
46 |
+
- political-discourse
|
47 |
+
- metadata
|
48 |
+
- mep
|
49 |
+
---
|
50 |
+
# Multi-EuP-v2
|
51 |
+
|
52 |
+
This dataset card documents **Multi-EuP-v2**, a multilingual corpus of European Parliament debate speeches enriched with Member of European Parliament (MEP) metadata and multilingual debate titles/IDs. It supports research on political text analysis, speaker-attribute prediction, stance/vote prediction, multilingual NLP, and retrieval.
|
53 |
+
|
54 |
+
## Dataset Details
|
55 |
+
|
56 |
+
### Dataset Description
|
57 |
+
|
58 |
+
**Multi-EuP-v2** aggregates **50,337** debate speeches (each a unique `did`) in **24 languages**. Each row contains the speech text (`TEXT`), speaker identity (`NAME`, `MEPID`), language (`LANGUAGE`), political group (`PARTY`), country and gender of the MEP, date, video timestamps, plus **multilingual debate titles `title_<LANG>`** and **per-language debate/vote linkage IDs `qid_<LANG>`**.
|
59 |
+
|
60 |
+
- **Curated by:** Jinrui Yang, Fan Jiang, Timothy Baldwin
|
61 |
+
- **Funded by:** Melbourne Research Scholarship; LIEF HPC-GPGPU Facility (LE170100200)
|
62 |
+
- **Shared by:** University of Melbourne
|
63 |
+
- **Language(s) (NLP):** `bg, cs, da, de, el, en, es, et, fi, fr, ga, hr, hu, it, lt, lv, mt, nl, pl, pt, ro, sk, sl, sv` (24 total)
|
64 |
+
- **License:** cc-by-4.0
|
65 |
+
|
66 |
+
### Dataset Sources
|
67 |
+
|
68 |
+
- **Repository:** [https://github.com/jrnlp/MLIR_language_bias]
|
69 |
+
- **Paper:** https://aclanthology.org/2024.mrl-1.23/
|
70 |
+
|
71 |
+
## Uses
|
72 |
+
|
73 |
+
### Direct Use
|
74 |
+
- **Text classification:** predict `gender`, `PARTY`, or `country` from `TEXT`.
|
75 |
+
- **Stance/vote prediction:** link `qid_<LANG>` to external roll-call vote labels.
|
76 |
+
- **Multilingual representation learning:** train/evaluate models across 24 EU languages.
|
77 |
+
- **Information retrieval:** index `TEXT` and use `title_*`/`qid_*` as multilingual query anchors.
|
78 |
+
|
79 |
+
### Out-of-Scope Use
|
80 |
+
- Inferring private attributes beyond public MEP metadata.
|
81 |
+
- Automated profiling for sensitive decisions.
|
82 |
+
- Misrepresenting model outputs as factual statements.
|
83 |
+
|
84 |
+
## Dataset Structure
|
85 |
+
|
86 |
+
Each row corresponds to a single speech/document.
|
87 |
+
|
88 |
+
**Core fields:**
|
89 |
+
- `did` *(string)* β unique speech ID
|
90 |
+
- `TEXT` *(string)* β speech text
|
91 |
+
- `DATE` *(string/date)* β debate date
|
92 |
+
- `LANGUAGE` *(string)* β language code
|
93 |
+
- `NAME` *(string)* β MEP name
|
94 |
+
- `MEPID` *(string)* β MEP ID
|
95 |
+
- `PARTY` *(string)* β political group
|
96 |
+
- `country` *(string)* β MEP's country
|
97 |
+
- `gender` *(string)* β `Female`, `Male`, or `Unknown`
|
98 |
+
- Additional provenance fields: `PRESIDENT`, `TEXTID`, `CODICT`, `VOD-START`, `VOD-END`
|
99 |
+
|
100 |
+
**Multilingual metadata:**
|
101 |
+
- `title_<LANG>` *(string)* β debate title in that language
|
102 |
+
- `qid_<LANG>` *(string)* β debate/vote linkage ID in that language
|
103 |
+
|
104 |
+
**Splits:** Single CSV, no predefined splits.
|
105 |
+
|
106 |
+
**Basic stats:**
|
107 |
+
- Rows: 50,337
|
108 |
+
- Languages: 24
|
109 |
+
- Top political groups: PPE 8,869; S-D 8,468; Renew 5,313; ECR 4,130; Verts/ALE 4,001; ID 3,286; The Left 2,951; NI 2,539; GUE/NGL 468
|
110 |
+
- Gender counts: Female 25,536; Male 23,461; Unknown 349
|
111 |
+
- Top countries: Germany 7,226; France 6,158; Poland 3,706; Spain 3,312; Italy 3,222; Netherlands 1,924; Greece 1,756; Romania 1,701; Czechia 1,661; Portugal 1,150; Belgium 1,134; Hungary 1,106
|
112 |
+
|
113 |
+
## Dataset Creation
|
114 |
+
|
115 |
+
### Curation Rationale
|
116 |
+
Support multilingual political text research, enabling standardized tasks in gender/group prediction, stance/vote prediction, and IR.
|
117 |
+
|
118 |
+
### Source Data
|
119 |
+
|
120 |
+
#### Data Collection and Processing
|
121 |
+
- **Source:** Official EP debates.
|
122 |
+
- **Processing:** metadata linking, language verification, deduplication, multilingual title extraction.
|
123 |
+
- **Quality checks:** consistency in language tags and IDs.
|
124 |
+
|
125 |
+
#### Who are the source data producers?
|
126 |
+
MEPs speaking in plenary debates; titles from official EP records.
|
127 |
+
|
128 |
+
### Annotations
|
129 |
+
|
130 |
+
#### Annotation process
|
131 |
+
Metadata compiled from public records; no manual stance labels.
|
132 |
+
|
133 |
+
#### Personal and Sensitive Information
|
134 |
+
Contains names and political opinions of public officials.
|
135 |
+
|
136 |
+
## Bias, Risks, and Limitations
|
137 |
+
- Domain bias: formal political discourse.
|
138 |
+
- Risk in demographic inference tasks.
|
139 |
+
- Language/script differences affect comparability.
|
140 |
+
|
141 |
+
### Recommendations
|
142 |
+
- Report per-language metrics.
|
143 |
+
- Avoid over-claiming causal interpretations.
|
144 |
+
|
145 |
+
## Citation
|
146 |
+
|
147 |
+
**BibTeX:**
|
148 |
+
```bibtex
|
149 |
+
@inproceedings{yang-etal-2024-language-bias,
|
150 |
+
title = {Language Bias in Multilingual Information Retrieval: The Nature of the Beast and Mitigation Methods},
|
151 |
+
author = {Yang, Jinrui and Jiang, Fan and Baldwin, Timothy},
|
152 |
+
booktitle = {Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)},
|
153 |
+
year = {2024},
|
154 |
+
pages = {280--292},
|
155 |
+
publisher = {Association for Computational Linguistics},
|
156 |
+
url = {https://aclanthology.org/2024.mrl-1.23/},
|
157 |
+
doi = {10.18653/v1/2024.mrl-1.23}
|
158 |
+
}
|
159 |
+
```
|
160 |
+
|
161 |
+
**APA:** Yang, J., Jiang, F., & Baldwin, T. (2024). *Language Bias in Multilingual Information Retrieval: The Nature of the Beast and Mitigation Methods*. In MRL 2024. ACL.
|
162 |
+
|
163 |
+
## Contact
|
164 |