File size: 19,668 Bytes
f987b04
 
 
d28bb20
f88a101
f987b04
f6587dc
f987b04
 
 
 
 
 
 
 
 
 
 
 
952354b
 
 
 
 
 
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
952354b
f987b04
 
 
 
 
 
 
 
952354b
f987b04
 
 
 
3073a00
 
 
 
 
 
 
 
 
88db448
f987b04
 
 
 
 
 
 
 
 
88db448
952354b
 
f987b04
952354b
f987b04
952354b
f987b04
952354b
f987b04
 
 
88db448
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
952354b
 
 
 
 
 
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
952354b
f987b04
 
88db448
f987b04
 
 
 
952354b
f987b04
 
 
 
3073a00
 
f987b04
 
 
 
 
 
bcea357
 
9374949
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
 
3073a00
 
 
9373984
3073a00
 
 
 
 
 
 
 
 
 
 
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
952354b
f987b04
 
88db448
f987b04
 
 
 
 
952354b
 
 
f987b04
 
 
952354b
f987b04
952354b
 
 
 
 
 
f987b04
 
 
 
952354b
f987b04
 
 
 
 
 
 
 
 
 
 
952354b
 
 
 
 
 
 
f987b04
952354b
 
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9374949
f987b04
9374949
 
 
3073a00
f987b04
 
 
 
 
 
 
 
9374949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f987b04
 
 
bcea357
 
 
 
9374949
bcea357
 
 
 
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9374949
 
 
 
 
 
 
 
 
 
 
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
952354b
f987b04
952354b
f987b04
952354b
88db448
952354b
88db448
952354b
3073a00
952354b
88db448
 
 
952354b
f987b04
2db2034
88db448
 
 
f987b04
 
 
 
 
 
 
 
 
 
3073a00
 
 
 
 
 
 
f987b04
952354b
f987b04
 
3073a00
 
 
952354b
3073a00
 
 
952354b
f987b04
 
 
952354b
 
 
 
 
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3073a00
 
 
 
 
 
f987b04
 
3073a00
f987b04
 
 
 
 
 
 
 
 
 
 
 
 
bcea357
 
 
 
 
 
 
 
 
f987b04
 
 
 
 
 
 
 
 
 
 
9374949
 
 
 
 
f987b04
 
 
 
 
 
 
 
 
 
 
 
3073a00
f987b04
 
 
 
 
 
 
bcea357
 
9374949
88db448
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
# /// script
# requires-python = ">=3.11"
# dependencies = [
#     "datasets>=4.0.0",
#     "huggingface-hub",
#     "pillow",
#     "vllm>=0.15.1",
#     "tqdm",
#     "toolz",
#     "torch",
# ]
# ///

"""
Convert document images to markdown using DeepSeek-OCR with vLLM.

This script processes images through the DeepSeek-OCR model to extract
text and structure as markdown, using vLLM for efficient batch processing.

Uses the official vLLM offline pattern: llm.generate() with PIL images
and NGramPerReqLogitsProcessor to prevent repetition on complex documents.
See: https://docs.vllm.ai/projects/recipes/en/latest/DeepSeek/DeepSeek-OCR.html

NOTE: Uses vLLM nightly wheels. First run may take a few minutes to download
and install dependencies.

Features:
- LaTeX equation recognition
- Table extraction and formatting
- Document structure preservation
- Image grounding and descriptions
- Multilingual support
- Batch processing with vLLM for better performance
"""

import argparse
import io
import json
import logging
import os
import sys
from datetime import datetime
from typing import Any, Dict, Union

import torch
from datasets import load_dataset
from huggingface_hub import DatasetCard, login
from PIL import Image
from toolz import partition_all
from tqdm.auto import tqdm
from vllm import LLM, SamplingParams
from vllm.model_executor.models.deepseek_ocr import NGramPerReqLogitsProcessor

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Prompt mode presets (from DeepSeek-OCR GitHub)
PROMPT_MODES = {
    "document": "<image>\n<|grounding|>Convert the document to markdown.",
    "image": "<image>\n<|grounding|>OCR this image.",
    "free": "<image>\nFree OCR.",
    "figure": "<image>\nParse the figure.",
    "describe": "<image>\nDescribe this image in detail.",
}


def check_cuda_availability():
    """Check if CUDA is available and exit if not."""
    if not torch.cuda.is_available():
        logger.error("CUDA is not available. This script requires a GPU.")
        logger.error("Please run on a machine with a CUDA-capable GPU.")
        sys.exit(1)
    else:
        logger.info(f"CUDA is available. GPU: {torch.cuda.get_device_name(0)}")


def to_pil(image: Union[Image.Image, Dict[str, Any], str]) -> Image.Image:
    """Convert various image formats to PIL Image."""
    if isinstance(image, Image.Image):
        return image
    elif isinstance(image, dict) and "bytes" in image:
        return Image.open(io.BytesIO(image["bytes"]))
    elif isinstance(image, str):
        return Image.open(image)
    else:
        raise ValueError(f"Unsupported image type: {type(image)}")


def create_dataset_card(
    source_dataset: str,
    model: str,
    num_samples: int,
    processing_time: str,
    batch_size: int,
    max_model_len: int,
    max_tokens: int,
    gpu_memory_utilization: float,
    image_column: str = "image",
    split: str = "train",
) -> str:
    """Create a dataset card documenting the OCR process."""
    model_name = model.split("/")[-1]

    return f"""---
tags:
- ocr
- document-processing
- deepseek
- deepseek-ocr
- markdown
- uv-script
- generated
---

# Document OCR using {model_name}

This dataset contains markdown-formatted OCR results from images in [{source_dataset}](https://huggingface.co/datasets/{source_dataset}) using DeepSeek-OCR.

## Processing Details

- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset})
- **Model**: [{model}](https://huggingface.co/{model})
- **Number of Samples**: {num_samples:,}
- **Processing Time**: {processing_time}
- **Processing Date**: {datetime.now().strftime("%Y-%m-%d %H:%M UTC")}

### Configuration

- **Image Column**: `{image_column}`
- **Output Column**: `markdown`
- **Dataset Split**: `{split}`
- **Batch Size**: {batch_size}
- **Max Model Length**: {max_model_len:,} tokens
- **Max Output Tokens**: {max_tokens:,}
- **GPU Memory Utilization**: {gpu_memory_utilization:.1%}

## Model Information

DeepSeek-OCR is a state-of-the-art document OCR model that excels at:
- LaTeX equations - Mathematical formulas preserved in LaTeX format
- Tables - Extracted and formatted as HTML/markdown
- Document structure - Headers, lists, and formatting maintained
- Image grounding - Spatial layout and bounding box information
- Complex layouts - Multi-column and hierarchical structures
- Multilingual - Supports multiple languages

## Dataset Structure

The dataset contains all original columns plus:
- `markdown`: The extracted text in markdown format with preserved structure
- `inference_info`: JSON list tracking all OCR models applied to this dataset

## Usage

```python
from datasets import load_dataset
import json

# Load the dataset
dataset = load_dataset("{{{{output_dataset_id}}}}", split="{split}")

# Access the markdown text
for example in dataset:
    print(example["markdown"])
    break

# View all OCR models applied to this dataset
inference_info = json.loads(dataset[0]["inference_info"])
for info in inference_info:
    print(f"Column: {{{{info['column_name']}}}} - Model: {{{{info['model_id']}}}}")
```

## Reproduction

This dataset was generated using the [uv-scripts/ocr](https://huggingface.co/datasets/uv-scripts/ocr) DeepSeek OCR vLLM script:

```bash
uv run https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py \\\\
    {source_dataset} \\\\
    <output-dataset> \\\\
    --image-column {image_column}
```

## Performance

- **Processing Speed**: ~{num_samples / (float(processing_time.split()[0]) * 60):.1f} images/second
- **Processing Method**: Batch processing with vLLM (2-3x speedup over sequential)

Generated with [UV Scripts](https://huggingface.co/uv-scripts)
"""


def main(
    input_dataset: str,
    output_dataset: str,
    image_column: str = "image",
    batch_size: int = 8,
    model: str = "deepseek-ai/DeepSeek-OCR",
    max_model_len: int = 8192,
    max_tokens: int = 8192,
    gpu_memory_utilization: float = 0.8,
    prompt_mode: str = "document",
    prompt: str = None,
    hf_token: str = None,
    split: str = "train",
    max_samples: int = None,
    private: bool = False,
    shuffle: bool = False,
    seed: int = 42,
    config: str = None,
    create_pr: bool = False,
    verbose: bool = False,
):
    """Process images from HF dataset through DeepSeek-OCR model with vLLM."""

    # Check CUDA availability first
    check_cuda_availability()

    # Track processing start time
    start_time = datetime.now()

    # Login to HF if token provided
    HF_TOKEN = hf_token or os.environ.get("HF_TOKEN")
    if HF_TOKEN:
        login(token=HF_TOKEN)

    # Determine prompt
    if prompt is not None:
        final_prompt = prompt
        logger.info("Using custom prompt")
    elif prompt_mode in PROMPT_MODES:
        final_prompt = PROMPT_MODES[prompt_mode]
        logger.info(f"Using prompt mode: {prompt_mode}")
    else:
        raise ValueError(
            f"Invalid prompt mode '{prompt_mode}'. "
            f"Use one of {list(PROMPT_MODES.keys())} or specify --prompt"
        )

    logger.info(f"Prompt: {final_prompt}")

    # Load dataset
    logger.info(f"Loading dataset: {input_dataset}")
    dataset = load_dataset(input_dataset, split=split)

    # Validate image column
    if image_column not in dataset.column_names:
        raise ValueError(
            f"Column '{image_column}' not found. Available: {dataset.column_names}"
        )

    # Shuffle if requested
    if shuffle:
        logger.info(f"Shuffling dataset with seed {seed}")
        dataset = dataset.shuffle(seed=seed)

    # Limit samples if requested
    if max_samples:
        dataset = dataset.select(range(min(max_samples, len(dataset))))
        logger.info(f"Limited to {len(dataset)} samples")

    # Initialize vLLM (matches official DeepSeek-OCR vLLM recipe)
    logger.info(f"Initializing vLLM with model: {model}")
    logger.info("This may take a few minutes on first run...")

    llm = LLM(
        model=model,
        trust_remote_code=True,
        max_model_len=max_model_len,
        gpu_memory_utilization=gpu_memory_utilization,
        enable_prefix_caching=False,
        mm_processor_cache_gb=0,
        logits_processors=[NGramPerReqLogitsProcessor],
    )

    sampling_params = SamplingParams(
        temperature=0.0,
        max_tokens=max_tokens,
        skip_special_tokens=False,
        extra_args=dict(
            ngram_size=30,
            window_size=90,
            whitelist_token_ids={128821, 128822},
        ),
    )

    logger.info(f"Processing {len(dataset)} images in batches of {batch_size}")

    # Process images in batches using llm.generate() with PIL images
    all_markdown = []

    for batch_indices in tqdm(
        partition_all(batch_size, range(len(dataset))),
        total=(len(dataset) + batch_size - 1) // batch_size,
        desc="DeepSeek-OCR vLLM processing",
    ):
        batch_indices = list(batch_indices)
        batch_images = [dataset[i][image_column] for i in batch_indices]

        try:
            # Build model inputs with PIL images (official vLLM pattern)
            model_inputs = []
            for img in batch_images:
                pil_img = to_pil(img).convert("RGB")
                model_inputs.append(
                    {"prompt": final_prompt, "multi_modal_data": {"image": pil_img}}
                )

            # Process with vLLM generate API
            outputs = llm.generate(model_inputs, sampling_params)

            # Extract outputs
            for output in outputs:
                text = output.outputs[0].text.strip()
                all_markdown.append(text)

        except Exception as e:
            logger.error(f"Error processing batch: {e}")
            all_markdown.extend(["[OCR FAILED]"] * len(batch_images))

    # Calculate processing time
    processing_duration = datetime.now() - start_time
    processing_time_str = f"{processing_duration.total_seconds() / 60:.1f} min"

    # Add markdown column to dataset
    logger.info("Adding markdown column to dataset")
    dataset = dataset.add_column("markdown", all_markdown)

    # Handle inference_info tracking
    logger.info("Updating inference_info...")

    inference_entry = {
        "model_id": model,
        "model_name": "DeepSeek-OCR",
        "column_name": "markdown",
        "timestamp": datetime.now().isoformat(),
        "prompt_mode": prompt_mode if prompt is None else "custom",
        "batch_size": batch_size,
        "max_tokens": max_tokens,
        "gpu_memory_utilization": gpu_memory_utilization,
        "max_model_len": max_model_len,
        "script": "deepseek-ocr-vllm.py",
        "script_url": "https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py",
    }

    if "inference_info" in dataset.column_names:
        logger.info("Updating existing inference_info column")

        def update_inference_info(example):
            try:
                existing_info = (
                    json.loads(example["inference_info"])
                    if example["inference_info"]
                    else []
                )
            except (json.JSONDecodeError, TypeError):
                existing_info = []
            existing_info.append(inference_entry)
            return {"inference_info": json.dumps(existing_info)}

        dataset = dataset.map(update_inference_info)
    else:
        logger.info("Creating new inference_info column")
        inference_list = [json.dumps([inference_entry])] * len(dataset)
        dataset = dataset.add_column("inference_info", inference_list)

    # Push to hub
    logger.info(f"Pushing to {output_dataset}")
    dataset.push_to_hub(
        output_dataset,
        private=private,
        token=HF_TOKEN,
        **({"config_name": config} if config else {}),
        create_pr=create_pr,
        commit_message=f"Add {model} OCR results ({len(dataset)} samples)"
        + (f" [{config}]" if config else ""),
    )

    # Create and push dataset card
    logger.info("Creating dataset card...")
    card_content = create_dataset_card(
        source_dataset=input_dataset,
        model=model,
        num_samples=len(dataset),
        processing_time=processing_time_str,
        batch_size=batch_size,
        max_model_len=max_model_len,
        max_tokens=max_tokens,
        gpu_memory_utilization=gpu_memory_utilization,
        image_column=image_column,
        split=split,
    )

    card = DatasetCard(card_content)
    card.push_to_hub(output_dataset, token=HF_TOKEN)
    logger.info("✅ Dataset card created and pushed!")

    logger.info("✅ OCR conversion complete!")
    logger.info(
        f"Dataset available at: https://huggingface.co/datasets/{output_dataset}"
    )
    logger.info(f"Processing time: {processing_time_str}")

    if verbose:
        import importlib.metadata

        logger.info("--- Resolved package versions ---")
        for pkg in ["vllm", "transformers", "torch", "datasets", "pyarrow", "pillow"]:
            try:
                logger.info(f"  {pkg}=={importlib.metadata.version(pkg)}")
            except importlib.metadata.PackageNotFoundError:
                logger.info(f"  {pkg}: not installed")
        logger.info("--- End versions ---")


if __name__ == "__main__":
    # Show example usage if no arguments
    if len(sys.argv) == 1:
        print("=" * 80)
        print("DeepSeek-OCR to Markdown Converter (vLLM)")
        print("=" * 80)
        print("\nThis script converts document images to markdown using")
        print("DeepSeek-OCR with vLLM for efficient batch processing.")
        print("\nFeatures:")
        print("- LaTeX equation recognition")
        print("- Table extraction and formatting")
        print("- Document structure preservation")
        print("- Image grounding and spatial layout")
        print("- Multilingual support")
        print("- Fast batch processing with vLLM")
        print("\nExample usage:")
        print("\n1. Basic OCR conversion (document mode with grounding):")
        print("   uv run deepseek-ocr-vllm.py document-images markdown-docs")
        print("\n2. Parse figures from documents:")
        print(
            "   uv run deepseek-ocr-vllm.py scientific-papers figures --prompt-mode figure"
        )
        print("\n3. Free OCR without layout:")
        print("   uv run deepseek-ocr-vllm.py images text --prompt-mode free")
        print("\n4. Process a subset for testing:")
        print(
            "   uv run deepseek-ocr-vllm.py large-dataset test-output --max-samples 10"
        )
        print("\n5. Running on HF Jobs:")
        print("   hf jobs uv run --flavor l4x1 \\")
        print("     -s HF_TOKEN \\")
        print(
            "     https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py \\"
        )
        print("       your-document-dataset \\")
        print("       your-markdown-output")
        print("\n" + "=" * 80)
        print("\nFor full help, run: uv run deepseek-ocr-vllm.py --help")
        sys.exit(0)

    parser = argparse.ArgumentParser(
        description="OCR images to markdown using DeepSeek-OCR (vLLM)",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Prompt Modes:
  document  Convert document to markdown with grounding (default)
  image     OCR any image with grounding
  free      Free OCR without layout preservation
  figure    Parse figures from documents
  describe  Generate detailed image descriptions

Examples:
  # Basic usage
  uv run deepseek-ocr-vllm.py my-images-dataset ocr-results

  # Parse figures from a document dataset
  uv run deepseek-ocr-vllm.py scientific-papers figures --prompt-mode figure

  # Free OCR without layout
  uv run deepseek-ocr-vllm.py images text --prompt-mode free

  # Custom prompt for specific task
  uv run deepseek-ocr-vllm.py dataset output --prompt "<image>\\nExtract all table data."

  # With custom batch size for performance tuning
  uv run deepseek-ocr-vllm.py dataset output --batch-size 16 --max-model-len 16384

  # Running on HF Jobs
  hf jobs uv run --flavor l4x1 -s HF_TOKEN \\
      https://huggingface.co/datasets/uv-scripts/ocr/raw/main/deepseek-ocr-vllm.py \\
      my-dataset my-output --max-samples 10
        """,
    )

    parser.add_argument("input_dataset", help="Input dataset ID from Hugging Face Hub")
    parser.add_argument("output_dataset", help="Output dataset ID for Hugging Face Hub")
    parser.add_argument(
        "--image-column",
        default="image",
        help="Column containing images (default: image)",
    )
    parser.add_argument(
        "--batch-size",
        type=int,
        default=8,
        help="Batch size for processing (default: 8, adjust based on GPU memory)",
    )
    parser.add_argument(
        "--model",
        default="deepseek-ai/DeepSeek-OCR",
        help="Model to use (default: deepseek-ai/DeepSeek-OCR)",
    )
    parser.add_argument(
        "--max-model-len",
        type=int,
        default=8192,
        help="Maximum model context length (default: 8192)",
    )
    parser.add_argument(
        "--max-tokens",
        type=int,
        default=8192,
        help="Maximum tokens to generate (default: 8192)",
    )
    parser.add_argument(
        "--gpu-memory-utilization",
        type=float,
        default=0.8,
        help="GPU memory utilization (default: 0.8)",
    )
    parser.add_argument(
        "--prompt-mode",
        default="document",
        choices=list(PROMPT_MODES.keys()),
        help="Prompt mode preset (default: document). Use --prompt for custom prompts.",
    )
    parser.add_argument(
        "--prompt",
        help="Custom OCR prompt (overrides --prompt-mode)",
    )
    parser.add_argument("--hf-token", help="Hugging Face API token")
    parser.add_argument(
        "--split", default="train", help="Dataset split to use (default: train)"
    )
    parser.add_argument(
        "--max-samples",
        type=int,
        help="Maximum number of samples to process (for testing)",
    )
    parser.add_argument(
        "--private", action="store_true", help="Make output dataset private"
    )
    parser.add_argument(
        "--config",
        help="Config/subset name when pushing to Hub (for benchmarking multiple models in one repo)",
    )
    parser.add_argument(
        "--create-pr",
        action="store_true",
        help="Create a pull request instead of pushing directly (for parallel benchmarking)",
    )
    parser.add_argument(
        "--shuffle",
        action="store_true",
        help="Shuffle the dataset before processing (useful for random sampling)",
    )
    parser.add_argument(
        "--seed",
        type=int,
        default=42,
        help="Random seed for shuffling (default: 42)",
    )
    parser.add_argument(
        "--verbose",
        action="store_true",
        help="Log resolved package versions after processing (useful for pinning deps)",
    )

    args = parser.parse_args()

    main(
        input_dataset=args.input_dataset,
        output_dataset=args.output_dataset,
        image_column=args.image_column,
        batch_size=args.batch_size,
        model=args.model,
        max_model_len=args.max_model_len,
        max_tokens=args.max_tokens,
        gpu_memory_utilization=args.gpu_memory_utilization,
        prompt_mode=args.prompt_mode,
        prompt=args.prompt,
        hf_token=args.hf_token,
        split=args.split,
        max_samples=args.max_samples,
        private=args.private,
        shuffle=args.shuffle,
        seed=args.seed,
        config=args.config,
        create_pr=args.create_pr,
        verbose=args.verbose,
    )