Datasets:
File size: 10,794 Bytes
e209cfe 23a634f e209cfe 23a634f 8551660 23a634f 8551660 2052e63 360df2e 2b3dfbf 1c8a650 30a5b51 f7d28c0 1b2ca80 23a634f 8551660 2052e63 360df2e 2b3dfbf 1c8a650 30a5b51 f7d28c0 1b2ca80 e209cfe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
---
language:
- af
- am
- ar
- de
- en
- es
- ha
- hi
- id
- ig
- jv
- mr
- om
- pcm
- pt
- ro
- ru
- rw
- so
- su
- sv
- sw
- ti
- tt
- uk
- vmw
- xh
- yo
- zh
- zu
license: cc-by-4.0
dataset_info:
- config_name: afr
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
sequence: string
splits:
- name: dev
num_bytes: 20642.721890067503
num_examples: 98
- name: test
num_bytes: 231786.03756078833
num_examples: 1065
download_size: 91103
dataset_size: 252428.75945085584
- config_name: amh
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
sequence: string
splits:
- name: dev
num_bytes: 124698.89141755062
num_examples: 592
- name: test
num_bytes: 386092.4231294258
num_examples: 1774
download_size: 364818
dataset_size: 510791.3145469764
- config_name: arq
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
sequence: string
splits:
- name: dev
num_bytes: 21064.001928640308
num_examples: 100
- name: test
num_bytes: 196310.80364303387
num_examples: 902
download_size: 92914
dataset_size: 217374.80557167417
- config_name: ary
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
sequence: string
splits:
- name: dev
num_bytes: 56240.88514946962
num_examples: 267
- name: test
num_bytes: 176723.2511731081
num_examples: 812
download_size: 107226
dataset_size: 232964.13632257772
- config_name: chn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
sequence: string
splits:
- name: dev
num_bytes: 42128.003857280615
num_examples: 200
- name: test
num_bytes: 575003.4847282656
num_examples: 2642
download_size: 407568
dataset_size: 617131.4885855461
- config_name: deu
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
sequence: string
splits:
- name: dev
num_bytes: 42128.003857280615
num_examples: 200
- name: test
num_bytes: 566733.1847965191
num_examples: 2604
download_size: 464416
dataset_size: 608861.1886537997
- config_name: eng
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
sequence: string
splits:
- name: dev
num_bytes: 24434.24223722276
num_examples: 116
- name: test
num_bytes: 602208.4187142735
num_examples: 2767
download_size: 199010
dataset_size: 626642.6609514962
- config_name: esp
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
sequence: string
splits:
- name: dev
num_bytes: 38757.76354869817
num_examples: 184
- name: test
num_bytes: 368898.90485026874
num_examples: 1695
download_size: 100425
dataset_size: 407656.6683989669
- config_name: hau
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
sequence: string
splits:
- name: dev
num_bytes: 74987.8468659595
num_examples: 356
- name: test
num_bytes: 235050.62963910928
num_examples: 1080
download_size: 105063
dataset_size: 310038.4765050688
configs:
- config_name: afr
data_files:
- split: dev
path: afr/dev-*
- split: test
path: afr/test-*
- config_name: amh
data_files:
- split: dev
path: amh/dev-*
- split: test
path: amh/test-*
- config_name: arq
data_files:
- split: dev
path: arq/dev-*
- split: test
path: arq/test-*
- config_name: ary
data_files:
- split: dev
path: ary/dev-*
- split: test
path: ary/test-*
- config_name: chn
data_files:
- split: dev
path: chn/dev-*
- split: test
path: chn/test-*
- config_name: deu
data_files:
- split: dev
path: deu/dev-*
- split: test
path: deu/test-*
- config_name: eng
data_files:
- split: dev
path: eng/dev-*
- split: test
path: eng/test-*
- config_name: esp
data_files:
- split: dev
path: esp/dev-*
- split: test
path: esp/test-*
- config_name: hau
data_files:
- split: dev
path: hau/dev-*
- split: test
path: hau/test-*
---
# SemEval 2025 Task 11 - Track C Dataset
This dataset contains the data for SemEval 2025 Task 11: Bridging the Gap in Text-Based Emotion Detection - Track C, organized as language-specific configurations.
## Dataset Description
The dataset is a multi-language, multi-label emotion classification dataset with separate configurations for each language.
- **Total languages**: 30 standard ISO codes
- **Total examples**: 57254
- **Splits**: dev, test (Track C has no train split)
## Track Information
Track C has more languages than Track B, but does not include a training set. It only provides dev and test splits for each language.
## Language Configurations
Each language is available as a separate configuration with the following statistics:
| ISO Code | Original Code(s) | Dev Examples | Test Examples | Total |
|----------|------------------|-------------|--------------|-------|
| af | afr | 98 | 1065 | 1163 |
| am | amh | 592 | 1774 | 2366 |
| ar | ary, arq | 367 | 1714 | 2081 |
| de | deu | 200 | 2604 | 2804 |
| en | eng | 116 | 2767 | 2883 |
| es | esp | 184 | 1695 | 1879 |
| ha | hau | 356 | 1080 | 1436 |
| hi | hin | 100 | 1010 | 1110 |
| id | ind | 156 | 851 | 1007 |
| ig | ibo | 479 | 1444 | 1923 |
| jv | jav | 151 | 837 | 988 |
| mr | mar | 100 | 1000 | 1100 |
| om | orm | 574 | 1721 | 2295 |
| pcm | pcm | 620 | 1870 | 2490 |
| pt | ptbr, ptmz | 457 | 3002 | 3459 |
| ro | ron | 123 | 1119 | 1242 |
| ru | rus | 199 | 1000 | 1199 |
| rw | kin | 407 | 1231 | 1638 |
| so | som | 566 | 1696 | 2262 |
| su | sun | 199 | 926 | 1125 |
| sv | swe | 200 | 1188 | 1388 |
| sw | swa | 551 | 1656 | 2207 |
| ti | tir | 614 | 1840 | 2454 |
| tt | tat | 200 | 1000 | 1200 |
| uk | ukr | 249 | 2234 | 2483 |
| vmw | vmw | 258 | 777 | 1035 |
| xh | xho | 682 | 1594 | 2276 |
| yo | yor | 497 | 1500 | 1997 |
| zh | chn | 200 | 2642 | 2842 |
| zu | zul | 875 | 2047 | 2922 |
## Features
- **id**: Unique identifier for each example
- **text**: Text content to classify
- **anger**, **disgust**, **fear**, **joy**, **sadness**, **surprise**: Presence of emotion
- **emotions**: List of emotions present in the text
## Usage
```python
from datasets import load_dataset
# Load all data for a specific language
eng_dataset = load_dataset("YOUR_USERNAME/semeval-2025-task11-track-c", "eng")
# Or load a specific split for a language
eng_dev = load_dataset("YOUR_USERNAME/semeval-2025-task11-track-c", "eng", split="dev")
```
## Citation
If you use this dataset, please cite the following papers:
```
@misc{{muhammad2025brighterbridginggaphumanannotated,
title={{BRIGHTER: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages}},
author={{Shamsuddeen Hassan Muhammad and Nedjma Ousidhoum and Idris Abdulmumin and Jan Philip Wahle and Terry Ruas and Meriem Beloucif and Christine de Kock and Nirmal Surange and Daniela Teodorescu and Ibrahim Said Ahmad and David Ifeoluwa Adelani and Alham Fikri Aji and Felermino D. M. A. Ali and Ilseyar Alimova and Vladimir Araujo and Nikolay Babakov and Naomi Baes and Ana-Maria Bucur and Andiswa Bukula and Guanqun Cao and Rodrigo Tufiño and Rendi Chevi and Chiamaka Ijeoma Chukwuneke and Alexandra Ciobotaru and Daryna Dementieva and Murja Sani Gadanya and Robert Geislinger and Bela Gipp and Oumaima Hourrane and Oana Ignat and Falalu Ibrahim Lawan and Rooweither Mabuya and Rahmad Mahendra and Vukosi Marivate and Andrew Piper and Alexander Panchenko and Charles Henrique Porto Ferreira and Vitaly Protasov and Samuel Rutunda and Manish Shrivastava and Aura Cristina Udrea and Lilian Diana Awuor Wanzare and Sophie Wu and Florian Valentin Wunderlich and Hanif Muhammad Zhafran and Tianhui Zhang and Yi Zhou and Saif M. Mohammad}},
year={{2025}},
eprint={{2502.11926}},
archivePrefix={{arXiv}},
primaryClass={{cs.CL}},
url={{https://arxiv.org/abs/2502.11926}},
}}
```
```
@misc{{muhammad2025semeval2025task11bridging,
title={{SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection}},
author={{Shamsuddeen Hassan Muhammad and Nedjma Ousidhoum and Idris Abdulmumin and Seid Muhie Yimam and Jan Philip Wahle and Terry Ruas and Meriem Beloucif and Christine De Kock and Tadesse Destaw Belay and Ibrahim Said Ahmad and Nirmal Surange and Daniela Teodorescu and David Ifeoluwa Adelani and Alham Fikri Aji and Felermino Ali and Vladimir Araujo and Abinew Ali Ayele and Oana Ignat and Alexander Panchenko and Yi Zhou and Saif M. Mohammad}},
year={{2025}},
eprint={{2503.07269}},
archivePrefix={{arXiv}},
primaryClass={{cs.CL}},
url={{https://arxiv.org/abs/2503.07269}},
}}
```
## License
This dataset is licensed under CC-BY 4.0.
|