Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
dataset_info:
|
3 |
features:
|
@@ -17,4 +101,4 @@ configs:
|
|
17 |
data_files:
|
18 |
- split: train
|
19 |
path: data/train-*
|
20 |
-
---
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
tags:
|
6 |
+
- biology
|
7 |
+
- point cloud
|
8 |
+
- classification
|
9 |
+
- medical
|
10 |
+
---
|
11 |
+
### MedPointS-CLS
|
12 |
+
This is the medical point cloud classification dataset from [MedPoints](https://flemme-docs.readthedocs.io/en/latest/medpoints.html), where `data` is input point cloud, and `label` is the class label.
|
13 |
+
|
14 |
+
Each point cloud has been normalized and sub-sampled to 2048 points. The correspondence between class names and labels is listed as follows (the label value plus 1 is the actual key of following map):
|
15 |
+
|
16 |
+
```
|
17 |
+
coarse_label_to_organ = {1: 'adrenalgland',
|
18 |
+
2: 'aorta',
|
19 |
+
3: 'autochthon',
|
20 |
+
4: 'bladder',
|
21 |
+
5: 'brain',
|
22 |
+
6: 'breast',
|
23 |
+
7: 'bronchie',
|
24 |
+
8: 'celiactrunk',
|
25 |
+
9: 'cheek',
|
26 |
+
10: 'clavicle',
|
27 |
+
11: 'colon',
|
28 |
+
12: 'costa',
|
29 |
+
13: 'duodenum',
|
30 |
+
14: 'esophagus',
|
31 |
+
15: 'eyeball',
|
32 |
+
16: 'femur',
|
33 |
+
17: 'gallbladder',
|
34 |
+
18: 'gluteusmaximus',
|
35 |
+
19: 'heart',
|
36 |
+
20: 'hip',
|
37 |
+
21: 'humerus',
|
38 |
+
22: 'iliacartery',
|
39 |
+
23: 'iliacvena',
|
40 |
+
24: 'iliopsoas',
|
41 |
+
25: 'inferiorvenacava',
|
42 |
+
26: 'kidney',
|
43 |
+
27: 'liver',
|
44 |
+
28: 'lung',
|
45 |
+
29: 'mediastinaltissue',
|
46 |
+
30: 'pancreas',
|
47 |
+
31: 'portalveinandsplenicvein',
|
48 |
+
32: 'smallbowel',
|
49 |
+
33: 'spleen',
|
50 |
+
34: 'stomach',
|
51 |
+
35: 'thymus',
|
52 |
+
36: 'thyroid',
|
53 |
+
37: 'trachea',
|
54 |
+
38: 'uterocervix',
|
55 |
+
39: 'uterus',
|
56 |
+
40: 'vertebrae',
|
57 |
+
41: 'gonads',
|
58 |
+
42: 'sacrum',
|
59 |
+
43: 'clavicula',
|
60 |
+
# 44: 'prostate',
|
61 |
+
44: 'pulmonaryartery',
|
62 |
+
# 45: 'ribcartilage',
|
63 |
+
45: 'rib',
|
64 |
+
46: 'scapula',
|
65 |
+
# 48: 'skull',
|
66 |
+
# 49: 'spinalcanal',
|
67 |
+
# 50: 'sternum'
|
68 |
+
}
|
69 |
+
```
|
70 |
+
|
71 |
+
If you find our project helpful, please consider to cite the following works:
|
72 |
+
|
73 |
+
```
|
74 |
+
@misc{zhang2025hierarchicalfeaturelearningmedical,
|
75 |
+
title={Hierarchical Feature Learning for Medical Point Clouds via State Space Model},
|
76 |
+
author={Guoqing Zhang and Jingyun Yang and Yang Li},
|
77 |
+
year={2025},
|
78 |
+
eprint={2504.13015},
|
79 |
+
archivePrefix={arXiv},
|
80 |
+
primaryClass={cs.CV},
|
81 |
+
url={https://arxiv.org/abs/2504.13015},
|
82 |
+
}
|
83 |
+
```
|
84 |
+
|
85 |
---
|
86 |
dataset_info:
|
87 |
features:
|
|
|
101 |
data_files:
|
102 |
- split: train
|
103 |
path: data/train-*
|
104 |
+
---
|