File size: 5,355 Bytes
e9bd7e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0857cc8
 
 
 
 
e9bd7e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ae6777
22babe0
e9bd7e9
8ae6777
c2e5f71
e9bd7e9
 
 
 
d985c8a
7959ca2
 
e9bd7e9
 
 
d985c8a
e9bd7e9
d985c8a
e9bd7e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7959ca2
e9bd7e9
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from typing import List
import datasets
import pandas as pd
from Bio import SeqIO

_CHUNK_LENGTHS = [16384, 32768]


def filter_fn(char: str) -> str:
    """
    Transforms any letter different from a base nucleotide into an 'N'.
    """
    if char in {'A', 'T', 'C', 'G'}:
        return char
    else:
        return 'N'


def clean_sequence(seq: str) -> str:
    """
    Process a chunk of DNA to have all letters in upper and restricted to
    A, T, C, G and N.
    """
    seq = seq.upper()
    seq = map(filter_fn, seq)
    seq = ''.join(list(seq))
    return seq


class TenSpeciesGenomesConfig(datasets.BuilderConfig):
    """BuilderConfig for The Human Reference Genome."""

    def __init__(self, *args, chunk_length: int, overlap: int = 0, **kwargs):
        """BuilderConfig for the multi species genomes.
        Args:
            chunk_length (:obj:`int`): Chunk length.
            overlap: (:obj:`int`): Overlap in base pairs for two consecutive chunks (defaults to 0).
            **kwargs: keyword arguments forwarded to super.
        """
        super().__init__(
            *args,
            name=f'{chunk_length}bp',
            **kwargs,
        )
        self.chunk_length = chunk_length
        self.overlap = overlap


class TenSpeciesGenomes(datasets.GeneratorBasedBuilder):
    """Genomes from 10 species, filtered and split into chunks of consecutive nucleotides.

    Species include:
        - Homo_sapiens
        - Mus_musculus
        - Drosophila_melanogaster
        - Danio_rerio
        - Caenorhabditis_elegans
        - Gallus_gallus
        - Gorilla_gorilla
        - Felis_catus
        - Salmo_trutta
        - Arabidopsis_thaliana
    """

    VERSION = datasets.Version("1.0.0")
    BUILDER_CONFIG_CLASS = TenSpeciesGenomesConfig
    BUILDER_CONFIGS = [TenSpeciesGenomesConfig(chunk_length=chunk_length) for chunk_length in _CHUNK_LENGTHS]
    DEFAULT_CONFIG_NAME = "32768bp"

    def _info(self):

        features = datasets.Features(
            {
                "sequence": datasets.Value("string"),
                "species_label": datasets.ClassLabel(
                    num_classes=10,
                    names=['Homo_sapiens', 'Mus_musculus', 'Drosophila_melanogaster', 'Danio_rerio',
                           'Caenorhabditis_elegans', 'Gallus_gallus', 'Gorilla_gorilla', 'Felis_catus',
                           'Salmo_trutta', 'Arabidopsis_thaliana']),
                "description": datasets.Value("string"),
                "start_pos": datasets.Value("int32"),
                "end_pos": datasets.Value("int32"),
                "fasta_url": datasets.Value("string")
            }
        )
        return datasets.DatasetInfo(
            # This defines the different columns of the dataset and their types
            features=features,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:

        urls_filepath = dl_manager.download_and_extract('ten_species_urls.csv')
        with open(urls_filepath) as urls_file:
            all_species = [line.rstrip().split(',')[0] for line in urls_file]
        with open(urls_filepath) as urls_file:
            urls = [line.rstrip().split(',')[-1] for line in urls_file]
        all_species = tuple(all_species)
        downloaded_files = dl_manager.download_and_extract(urls)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"all_species": all_species, "files": downloaded_files,
                            "chunk_length": self.config.chunk_length, "overlap": self.config.overlap}
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, all_species, files, chunk_length, overlap):
        key = 0
        for species, file in zip(all_species, files):
            with open(file, 'rt') as f:
                fasta_sequences = SeqIO.parse(f, 'fasta')

                for record in fasta_sequences:
                    # parse descriptions in the fasta file
                    sequence, description = str(record.seq), record.description

                    # clean chromosome sequence
                    sequence = clean_sequence(sequence)
                    seq_length = len(sequence)

                    # split into chunks
                    num_chunks = (seq_length - 2 * overlap) // chunk_length

                    if num_chunks < 1:
                        continue

                    sequence = sequence[:(chunk_length * num_chunks + 2 * overlap)]
                    seq_length = len(sequence)

                    for i in range(num_chunks):
                        # get chunk
                        start_pos = i * chunk_length
                        end_pos = min(seq_length, (i+1) * chunk_length + 2 * overlap)
                        chunk_sequence = sequence[start_pos:end_pos]

                        # yield chunk
                        yield key, {
                            'sequence': chunk_sequence,
                            'species_label': species,
                            'start_pos': start_pos,
                            'end_pos': end_pos,
                            'fasta_url': file.split('::')[-1]
                        }
                        key += 1