Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
tytskiy NonameUntitled commited on
Commit
3e159c8
·
verified ·
1 Parent(s): 5b7739c

Update benchmarks/models/itemknn/README.md (#9)

Browse files

- Update benchmarks/models/itemknn/README.md (b135b95e26949729529cab0f73d419bef7af9376)


Co-authored-by: Vladimir <[email protected]>

Files changed (1) hide show
  1. benchmarks/models/itemknn/README.md +12 -6
benchmarks/models/itemknn/README.md CHANGED
@@ -1,10 +1,12 @@
1
  # ItemKNN
2
 
3
- We employ cosine similarity to measure similarity between vectors. Item vectors are represented as (num users)-dimensional vectors derived from the user-item interaction matrix, where component \\(d\\) represents how many times user \\(d\\) interacted with this item.
4
 
5
- Top-k recommendations are generated by retrieving vectors closest to the user's temporal interaction pattern (with decay parameter \\(\tau \rightarrow 0\\)) controlling historical influence).
 
6
 
7
- The formulation is: \\(score(user_i, item_j) = \cos(V[i,:], U^\top[j,:])\\),
 
 
8
 
9
  where:
10
 
@@ -12,15 +14,19 @@ where:
12
 
13
  - \\(V\\) [num users \\(\times\\) num users]: user embedding matrix, where each row is:
14
 
15
- \\(V[i, :] = \sum_{(t, k) \in A_i} \tau^{\max_t(i) - t} U^\top[k, :]\\)
16
 
17
  - \\(A_i\\): set of \\(i\\)-th user's (interaction timestamp, item index) pairs
18
  - \\(\max_t(i)\\): last \\(i\\)-th user's interaction timestamp
19
  - \\(\tau\\): time decay coefficient (per second)
20
 
 
21
 
22
- The hyperparameter `hour` defines the time period (in hours) associated with a decay factor of 0.9.
23
 
 
24
 
25
- For 5b datasets, the results are not provided due to exceeding of memory constraints caused by matrix multiplications between [num users \\(\times\\) num item] and [num item \\(\times\\) num items].
26
 
 
 
 
1
  # ItemKNN
2
 
 
3
 
4
+ For this approach item vectors are represented as user-frequency [num users]-dimensional vectors constructed from the user-item interaction matrix \\(U\\).
5
+ \\(U_{ij}\\) indicates how many times user \\(i\\) interacted with the item \\(j\\).
6
 
7
+ ### Similarity Measurement
8
+
9
+ We employ cosine similarity to measure similarity between vectors: \\(score(user_i, item_j) = \cos(V_i, U^\top_j)\\)
10
 
11
  where:
12
 
 
14
 
15
  - \\(V\\) [num users \\(\times\\) num users]: user embedding matrix, where each row is:
16
 
17
+ \\(V_{i} = \sum_{(t, k) \in A_i} \tau^{\max_t(i) - t} U^\top_{k}\\)
18
 
19
  - \\(A_i\\): set of \\(i\\)-th user's (interaction timestamp, item index) pairs
20
  - \\(\max_t(i)\\): last \\(i\\)-th user's interaction timestamp
21
  - \\(\tau\\): time decay coefficient (per second)
22
 
23
+ For instance, when \\(\tau\\) is equal to 0 (which is the simplest case), Top-k recommendations are generated by retrieving the most closest (k) item embeddings to the latest user's representation.
24
 
25
+ ### Hyperparameters
26
 
27
+ Parameter `hour` defines the time period (in hours) associated with a decay factor of 0.9.
28
 
29
+ ### Implementation Note
30
 
31
+ For 5b-scale datasets, memory constraints arise when multiplying user-item interaction matrix \\(U\\) and the user embedding matrix making computations infeasible.
32
+ Thus, results for these datasets are not provided.