Update README.md
Browse files
README.md
CHANGED
@@ -178,51 +178,50 @@ from datasets import load_dataset
|
|
178 |
ds = load_dataset("yandex/yambda", data_dir="flat/50m", data_files="likes.parquet")
|
179 |
```
|
180 |
|
181 |
-
Also, we provide simple wrapper for convenient
|
182 |
-
usage
|
183 |
```python
|
184 |
from typing import Literal
|
185 |
-
|
186 |
from datasets import Dataset, DatasetDict, load_dataset
|
187 |
|
188 |
-
|
189 |
class YambdaDataset:
|
190 |
-
INTERACTIONS = frozenset([
|
|
|
|
|
191 |
|
192 |
def __init__(
|
193 |
-
self,
|
|
|
|
|
194 |
):
|
195 |
assert dataset_type in {"flat", "sequential"}
|
196 |
assert dataset_size in {"50m", "500m", "5b"}
|
197 |
-
|
198 |
self.dataset_type = dataset_type
|
199 |
self.dataset_size = dataset_size
|
200 |
|
201 |
-
def interaction(
|
202 |
-
|
203 |
-
) -> Dataset:
|
204 |
-
assert
|
205 |
-
|
206 |
-
return YambdaDataset._download(f"{self.dataset_type}/{self.dataset_size}", type)
|
207 |
|
208 |
def audio_embeddings(self) -> Dataset:
|
209 |
-
return
|
210 |
|
211 |
def album_item_mapping(self) -> Dataset:
|
212 |
-
return
|
213 |
|
214 |
def artist_item_mapping(self) -> Dataset:
|
215 |
-
return
|
216 |
|
217 |
@staticmethod
|
218 |
def _download(data_dir: str, file: str) -> Dataset:
|
219 |
data = load_dataset("yandex/yambda", data_dir=data_dir, data_files=f"{file}.parquet")
|
|
|
220 |
assert isinstance(data, DatasetDict)
|
221 |
return data["train"]
|
222 |
|
223 |
dataset = YambdaDataset("flat", "50m")
|
224 |
-
|
225 |
-
likes = dataset.interaction("likes")
|
226 |
```
|
227 |
|
228 |
## FAQ
|
|
|
178 |
ds = load_dataset("yandex/yambda", data_dir="flat/50m", data_files="likes.parquet")
|
179 |
```
|
180 |
|
181 |
+
Also, we provide simple wrapper for convenient usage:
|
|
|
182 |
```python
|
183 |
from typing import Literal
|
|
|
184 |
from datasets import Dataset, DatasetDict, load_dataset
|
185 |
|
|
|
186 |
class YambdaDataset:
|
187 |
+
INTERACTIONS = frozenset([
|
188 |
+
"likes", "listens", "multi_event", "dislikes", "unlikes", "undislikes"
|
189 |
+
])
|
190 |
|
191 |
def __init__(
|
192 |
+
self,
|
193 |
+
dataset_type: Literal["flat", "sequential"] = "flat",
|
194 |
+
dataset_size: Literal["50m", "500m", "5b"] = "50m"
|
195 |
):
|
196 |
assert dataset_type in {"flat", "sequential"}
|
197 |
assert dataset_size in {"50m", "500m", "5b"}
|
|
|
198 |
self.dataset_type = dataset_type
|
199 |
self.dataset_size = dataset_size
|
200 |
|
201 |
+
def interaction(self, event_type: Literal[
|
202 |
+
"likes", "listens", "multi_event", "dislikes", "unlikes", "undislikes"
|
203 |
+
]) -> Dataset:
|
204 |
+
assert event_type in YambdaDataset.INTERACTIONS
|
205 |
+
return self._download(f"{self.dataset_type}/{self.dataset_size}", event_type)
|
|
|
206 |
|
207 |
def audio_embeddings(self) -> Dataset:
|
208 |
+
return self._download("", "embeddings")
|
209 |
|
210 |
def album_item_mapping(self) -> Dataset:
|
211 |
+
return self._download("", "album_item_mapping")
|
212 |
|
213 |
def artist_item_mapping(self) -> Dataset:
|
214 |
+
return self._download("", "artist_item_mapping")
|
215 |
|
216 |
@staticmethod
|
217 |
def _download(data_dir: str, file: str) -> Dataset:
|
218 |
data = load_dataset("yandex/yambda", data_dir=data_dir, data_files=f"{file}.parquet")
|
219 |
+
# Returns DatasetDict; extracting the only split
|
220 |
assert isinstance(data, DatasetDict)
|
221 |
return data["train"]
|
222 |
|
223 |
dataset = YambdaDataset("flat", "50m")
|
224 |
+
likes = dataset.interaction("likes") # returns a HuggingFace Dataset
|
|
|
225 |
```
|
226 |
|
227 |
## FAQ
|