Datasets:

Modalities:
Tabular
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
tytskiy commited on
Commit
afb6a86
Β·
verified Β·
1 Parent(s): bc72936

Move README.md

Browse files
Files changed (1) hide show
  1. benchmarks/README.md +124 -0
benchmarks/README.md ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Reproducibility Guide
2
+
3
+ ## Overview
4
+
5
+ This part of repo contains the implementation and experiments. This guide will help you reproduce the results using Docker or manual installation.
6
+
7
+ ---
8
+
9
+ ## Docker Setup (Recommended)
10
+
11
+ ### 1. Build Docker Image
12
+
13
+ ```bash
14
+ docker build -t yambda-image .
15
+ ```
16
+
17
+ ### 2. Run Container with GPU Support
18
+
19
+ ```bash
20
+ docker run --gpus all \
21
+ --runtime=nvidia \
22
+ -it \
23
+ -v </absolute/path/to/local/data>:/yambda/data \
24
+ yambda-image
25
+ ```
26
+
27
+ ---
28
+
29
+ ## Data Organization
30
+
31
+ Create following structure in mounted data directory:
32
+
33
+ ```bash
34
+ data/
35
+ β”œβ”€β”€ flat/
36
+ β”‚ └── 50m/
37
+ β”‚ β”œβ”€β”€ likes.parquet
38
+ β”‚ β”œβ”€β”€ listens.parquet
39
+ β”‚ └── ...
40
+ └── sequential/
41
+ └── 50m/
42
+ β”œβ”€β”€ likes.parquet
43
+ β”œβ”€β”€ listens.parquet
44
+ └── ...
45
+ ```
46
+
47
+ Note:
48
+ Sequential data is only needed for sasrec. You can build it from flat using scripts/transform2sequential.py or download
49
+
50
+ ---
51
+
52
+ ## Running Experiments
53
+
54
+ ### General Usage
55
+
56
+ ```bash
57
+ # For example random_rec
58
+
59
+ cd models/random_rec/
60
+
61
+ # Show help for main script
62
+ python main.py --help
63
+
64
+ # Basic execution
65
+ python main.py
66
+ ```
67
+
68
+ ### Specific Methods
69
+
70
+ #### BPR/ALS
71
+
72
+ ```bash
73
+ cd models/bpr_als
74
+
75
+ python main.py --model bpr
76
+ python main.py --model als
77
+ ```
78
+
79
+ #### SASRec
80
+
81
+ ```bash
82
+ cd models/sasrec
83
+
84
+ # Training
85
+ python train.py --exp_name exp1
86
+
87
+ # Evaluation
88
+ python eval.py --exp_name exp1
89
+ ```
90
+ ---
91
+
92
+ ## Manual Installation (Not Recommedned)
93
+
94
+ ### 1. Install Core Dependencies
95
+
96
+ ```bash
97
+ pip install torch torchvision torchaudio
98
+ ```
99
+
100
+ ### 2. Install Implicit (CUDA 11.8 required)
101
+
102
+ Implicit works only with cuda<12. See reasons [here](https://github.com/NVIDIA/nvidia-docker/issues/700#issuecomment-381073278)
103
+
104
+ ```bash
105
+ CUDACXX=/usr/local/cuda-11.8/bin/nvcc \
106
+ pip install implicit
107
+ ```
108
+
109
+ ### 3. Install SANSA
110
+
111
+ ```bash
112
+ sudo apt-get install libsuitesparse-dev
113
+ git clone https://github.com/glami/sansa.git
114
+ cd sansa && \
115
+ SUITESPARSE_INCLUDE_DIR=/usr/include/suitesparse \
116
+ SUITESPARSE_LIBRARY_DIR=/usr/lib \
117
+ pip install .
118
+ ```
119
+
120
+ ### 4. Install Project Package
121
+
122
+ ```bash
123
+ pip install . # In root directory
124
+ ```