# Reproducibility Guide ## Overview This part of repo contains the implementation and experiments. This guide will help you reproduce the results using Docker or manual installation. --- ## Docker Setup (Recommended) ### 1. Build Docker Image ```bash docker build -t yambda-image . ``` ### 2. Run Container with GPU Support ```bash docker run --gpus all \ --runtime=nvidia \ -it \ -v :/yambda/data \ yambda-image ``` --- ## Data Organization Create following structure in mounted data directory: ```bash data/ ├── flat/ │ └── 50m/ │ ├── likes.parquet │ ├── listens.parquet │ └── ... └── sequential/ └── 50m/ ├── likes.parquet ├── listens.parquet └── ... ``` Note: Sequential data is only needed for sasrec. You can build it from flat using scripts/transform2sequential.py or download --- ## Running Experiments ### General Usage ```bash # For example random_rec cd models/random_rec/ # Show help for main script python main.py --help # Basic execution python main.py ``` ### Specific Methods #### BPR/ALS ```bash cd models/bpr_als python main.py --model bpr python main.py --model als ``` #### SASRec ```bash cd models/sasrec # Training python train.py --exp_name exp1 # Evaluation python eval.py --exp_name exp1 ``` --- ## Manual Installation (Not Recommedned) ### 1. Install Core Dependencies ```bash pip install torch torchvision torchaudio ``` ### 2. Install Implicit (CUDA 11.8 required) Implicit works only with cuda<12. See reasons [here](https://github.com/NVIDIA/nvidia-docker/issues/700#issuecomment-381073278) ```bash CUDACXX=/usr/local/cuda-11.8/bin/nvcc \ pip install implicit ``` ### 3. Install SANSA ```bash sudo apt-get install libsuitesparse-dev git clone https://github.com/glami/sansa.git cd sansa && \ SUITESPARSE_INCLUDE_DIR=/usr/include/suitesparse \ SUITESPARSE_LIBRARY_DIR=/usr/lib \ pip install . ``` ### 4. Install Project Package ```bash pip install . ```