yangheng commited on
Commit
172eebd
·
verified ·
1 Parent(s): 279ef29

Upload utils.py

Browse files
Files changed (1) hide show
  1. utils.py +129 -0
utils.py ADDED
@@ -0,0 +1,129 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import zipfile
3
+
4
+ import findfile
5
+ import requests
6
+ import torch
7
+ from omnigenbench import (
8
+ ClassificationMetric,
9
+ OmniTokenizer,
10
+ OmniModelForSequenceClassification,
11
+ OmniDatasetForSequenceClassification,
12
+ Trainer,
13
+ )
14
+
15
+
16
+
17
+
18
+ def download_te_dataset(local_dir):
19
+ if not findfile.find_cwd_dir(local_dir, disable_alert=True):
20
+ os.makedirs(local_dir, exist_ok=True)
21
+ url_to_download = "https://huggingface.co/datasets/yangheng/translation_efficiency_prediction/resolve/main/translation_efficiency_prediction.zip"
22
+ zip_path = os.path.join(local_dir, "te_rice_dataset.zip")
23
+ if not os.path.exists(zip_path):
24
+ print(f"Downloading te_rice_dataset.zip from {url_to_download}...")
25
+ response = requests.get(url_to_download, stream=True)
26
+ response.raise_for_status()
27
+
28
+ with open(zip_path, 'wb') as f:
29
+ for chunk in response.iter_content(chunk_size=8192):
30
+ f.write(chunk)
31
+ print(f"Downloaded {zip_path}")
32
+
33
+ # Unzip the dataset if the zip file exists
34
+ ZIP_DATASET = findfile.find_cwd_file("te_rice_dataset.zip")
35
+ if ZIP_DATASET:
36
+ with zipfile.ZipFile(ZIP_DATASET, 'r') as zip_ref:
37
+ zip_ref.extractall(local_dir)
38
+ print(f"Extracted te_rice_dataset.zip into {local_dir}")
39
+ os.remove(ZIP_DATASET)
40
+ else:
41
+ print("te_rice_dataset.zip not found. Skipping extraction.")
42
+
43
+
44
+ class TEClassificationDataset(OmniDatasetForSequenceClassification):
45
+ def __init__(self, data_source, tokenizer, max_length, **kwargs):
46
+ super().__init__(data_source, tokenizer, max_length, **kwargs)
47
+
48
+ def prepare_input(self, instance, **kwargs):
49
+ sequence, labels = instance["sequence"], instance["label"]
50
+
51
+ tokenized_inputs = self.tokenizer(
52
+ sequence,
53
+ padding=True,
54
+ truncation=True,
55
+ max_length=self.max_length,
56
+ return_tensors="pt",
57
+ **kwargs
58
+ )
59
+ tokenized_inputs["labels"] = torch.tensor(int(labels), dtype=torch.long)
60
+ # Remove the batch dimension that gets added by return_tensors="pt"
61
+ for col in tokenized_inputs:
62
+ tokenized_inputs[col] = tokenized_inputs[col].squeeze(0)
63
+
64
+ if labels is not None:
65
+ label_id = self.label2id.get(str(labels), -100)
66
+ tokenized_inputs["labels"] = torch.tensor(label_id, dtype=torch.long)
67
+
68
+ return tokenized_inputs
69
+
70
+ def run_finetuning(
71
+ model_name,
72
+ train_file,
73
+ valid_file,
74
+ test_file,
75
+ label2id,
76
+ epochs,
77
+ learning_rate,
78
+ weight_decay,
79
+ batch_size,
80
+ max_length,
81
+ seed,
82
+ ):
83
+ """
84
+ Runs the full TE classification analysis pipeline.
85
+ """
86
+ # 1. Model & Tokenizer Initialization
87
+ tokenizer = OmniTokenizer.from_pretrained(model_name, trust_remote_code=True)
88
+ ssp_model = OmniModelForSequenceClassification(
89
+ model_name,
90
+ tokenizer=tokenizer,
91
+ label2id=label2id,
92
+ trust_remote_code=True,
93
+ )
94
+ print(f"Model '{model_name}' and tokenizer loaded successfully.")
95
+
96
+ # 2. Data Loading & Preparation
97
+ train_set = TEClassificationDataset(data_source=train_file, tokenizer=tokenizer, label2id=label2id, max_length=max_length)
98
+ valid_set = TEClassificationDataset(data_source=valid_file, tokenizer=tokenizer, label2id=label2id, max_length=max_length)
99
+ test_set = TEClassificationDataset(data_source=test_file, tokenizer=tokenizer, label2id=label2id, max_length=max_length)
100
+
101
+ train_loader = torch.utils.data.DataLoader(train_set, batch_size=batch_size, shuffle=True)
102
+ valid_loader = torch.utils.data.DataLoader(valid_set, batch_size=batch_size)
103
+ test_loader = torch.utils.data.DataLoader(test_set, batch_size=batch_size)
104
+ print("Datasets and DataLoaders created.")
105
+
106
+ # 3. Training & Evaluation Setup
107
+ compute_metrics = [ClassificationMetric(ignore_y=-100, average="macro").f1_score]
108
+ optimizer = torch.optim.AdamW(ssp_model.parameters(), lr=learning_rate, weight_decay=weight_decay)
109
+
110
+ trainer = Trainer(
111
+ model=ssp_model,
112
+ train_loader=train_loader,
113
+ eval_loader=valid_loader,
114
+ test_loader=test_loader,
115
+ batch_size=batch_size,
116
+ epochs=epochs,
117
+ optimizer=optimizer,
118
+ compute_metrics=compute_metrics,
119
+ seeds=seed,
120
+ )
121
+
122
+ # 4. Run Training
123
+ metrics = trainer.train()
124
+ trainer.save_model("finetuned_te_model")
125
+ print("Training completed!")
126
+
127
+ return metrics
128
+
129
+