File size: 11,271 Bytes
93cb9bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "datasets",
# "huggingface-hub[hf_transfer]",
# "flashinfer-python",
# "hf-xet>= 1.1.7",
# "torch",
# "transformers",
# "vllm",
# ]
#
# ///
"""
Generate responses for prompts in a dataset using vLLM for efficient GPU inference.
This script loads a dataset from Hugging Face Hub containing chat-formatted messages,
applies the model's chat template, generates responses using vLLM, and saves the
results back to the Hub with a comprehensive dataset card.
Example usage:
# Local execution with auto GPU detection
uv run generate-responses.py \\
username/input-dataset \\
username/output-dataset \\
--messages-column messages
# With custom model and sampling parameters
uv run generate-responses.py \\
username/input-dataset \\
username/output-dataset \\
--model-id meta-llama/Llama-3.1-8B-Instruct \\
--temperature 0.9 \\
--top-p 0.95 \\
--max-tokens 2048
# HF Jobs execution (see script output for full command)
hf jobs uv run --flavor a100x4 ...
"""
import argparse
import logging
import os
import sys
from datetime import datetime
from typing import Optional
from datasets import load_dataset
from huggingface_hub import get_token, login
from torch import cuda
from tqdm.auto import tqdm
from transformers import AutoTokenizer
from vllm import LLM
from dotenv import load_dotenv
# Enable HF Transfer for faster downloads
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
def check_gpu_availability() -> int:
"""Check if CUDA is available and return the number of GPUs."""
if not cuda.is_available():
logger.error("CUDA is not available. This script requires a GPU.")
logger.error(
"Please run on a machine with NVIDIA GPU or use HF Jobs with GPU flavor."
)
sys.exit(1)
num_gpus = cuda.device_count()
for i in range(num_gpus):
gpu_name = cuda.get_device_name(i)
gpu_memory = cuda.get_device_properties(i).total_memory / 1024**3
logger.info(f"GPU {i}: {gpu_name} with {gpu_memory:.1f} GB memory")
return num_gpus
def main(
src_dataset_hub_id: str,
output_dataset_hub_id: str,
model_id: str = "Qwen/Qwen3-Embedding-0.6B",
input_column: str = "text",
output_column: str = "embeddings",
gpu_memory_utilization: float = 0.90,
input_truncation_len: Optional[int] = None,
tensor_parallel_size: Optional[int] = None,
max_samples: Optional[int] = None,
hf_token: Optional[str] = None,
):
"""
Main generation pipeline.
Args:
src_dataset_hub_id: Input dataset on Hugging Face Hub
output_dataset_hub_id: Where to save results on Hugging Face Hub
model_id: Hugging Face model ID for embedding generation
input_column: Column name containing documents to embed
output_column: Column name for generated embeddings
gpu_memory_utilization: GPU memory utilization factor
input_truncation_len: Maximum input length (None uses model default)
tensor_parallel_size: Number of GPUs to use (auto-detect if None)
max_samples: Maximum number of samples to process (None for all)
hf_token: Hugging Face authentication token
"""
generation_start_time = datetime.now().isoformat()
# GPU check and configuration
num_gpus = check_gpu_availability()
if tensor_parallel_size is None:
tensor_parallel_size = num_gpus
logger.info(
f"Auto-detected {num_gpus} GPU(s), using tensor_parallel_size={tensor_parallel_size}"
)
else:
logger.info(f"Using specified tensor_parallel_size={tensor_parallel_size}")
if tensor_parallel_size > num_gpus:
logger.warning(
f"Requested {tensor_parallel_size} GPUs but only {num_gpus} available"
)
# Authentication - try multiple methods
load_dotenv()
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") or get_token()
if not HF_TOKEN:
logger.error("No HuggingFace token found. Please provide token via:")
logger.error(" 1. --hf-token argument")
logger.error(" 2. HF_TOKEN environment variable")
logger.error(" 3. Run 'huggingface-cli login' or use login() in Python")
sys.exit(1)
logger.info("HuggingFace token found, authenticating...")
login(token=HF_TOKEN)
# Initialize vLLM
logger.info(f"Loading model: {model_id}")
vllm_kwargs = {
"model": model_id,
"tensor_parallel_size": tensor_parallel_size,
"gpu_memory_utilization": gpu_memory_utilization,
"task": "embed",
"max_model_len": input_truncation_len + 128,
}
llm = LLM(**vllm_kwargs)
# Load tokenizer for chat template
logger.info("Loading tokenizer...")
tokenizer = AutoTokenizer.from_pretrained(model_id)
# Load dataset
logger.info(f"Loading dataset: {src_dataset_hub_id}")
dataset = load_dataset(src_dataset_hub_id, split="train")
# Apply max_samples if specified
if max_samples is not None and max_samples < len(dataset):
logger.info(f"Limiting dataset to {max_samples} samples")
dataset = dataset.select(range(max_samples))
total_examples = len(dataset)
logger.info(f"Dataset loaded with {total_examples:,} examples")
# Determine which column to use and validate
if input_column not in dataset.column_names:
logger.error(
f"Column '{input_column}' not found. Available columns: {dataset.column_names}"
)
sys.exit(1)
logger.info(f"Using input column mode with column: '{input_column}'")
# Process documents and truncate if specified
logger.info("Preparing documents...")
all_documents = []
for example in tqdm(dataset, desc="Processing documents"):
document = f"# {example['title_dl']}\n\nFrom: {example['source_url']}\n\n{example[input_column]}"
# apply tokenizer to the document, then truncate using token counts
if input_truncation_len is not None:
tokens = tokenizer.encode(document)
if len(tokens) > input_truncation_len:
document = tokenizer.decode(tokens[:input_truncation_len])
all_documents.append(document) # this is a list of strings
# Generate embeddings - vLLM handles batching internally
logger.info("vLLM will handle batching and scheduling automatically")
outputs = llm.embed(all_documents)
# Extract generated embeddings and create full response list
logger.info("Extracting generated embeddings...")
embeddings = [o.outputs.embedding for o in outputs]
# Add responses to dataset
logger.info("Adding responses to dataset...")
dataset = dataset.add_column(output_column, embeddings)
# Push dataset to hub
logger.info(f"Pushing dataset to: {output_dataset_hub_id}")
dataset.push_to_hub(output_dataset_hub_id, token=HF_TOKEN)
logger.info("✅ Embedding generation complete!")
logger.info(
f"Dataset available at: https://huggingface.co/datasets/{output_dataset_hub_id}"
)
if __name__ == "__main__":
if len(sys.argv) > 1:
parser = argparse.ArgumentParser(
description="Generate responses for dataset prompts using vLLM",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
# Basic usage with default Qwen model
uv run generate-embeddings-uv-vllm.py input-dataset output-dataset
# With custom model and parameters
uv run generate-embeddings-uv-vllm.py input-dataset output-dataset \\
--model-id Qwen/Qwen3-Embedding-0.6B \\
--input-column text \\
--output-column embeddings
# Force specific GPU configuration
uv run generate-embeddings-uv-vllm.py input-dataset output-dataset \\
--tensor-parallel-size 2 \\
--gpu-memory-utilization 0.95
# Using environment variable for token
HF_TOKEN=hf_xxx uv run generate-embeddings-uv-vllm.py input-dataset output-dataset
""",
)
parser.add_argument(
"src_dataset_hub_id",
help="Input dataset on Hugging Face Hub (e.g., username/dataset-name)",
)
parser.add_argument(
"output_dataset_hub_id", help="Output dataset name on Hugging Face Hub"
)
parser.add_argument(
"--model-id",
type=str,
default="Qwen/Qwen3-Embedding-0.6B",
help="Model to use for generation (default: Qwen3-Embedding-0.6B)",
)
parser.add_argument(
"--input-column",
type=str,
default="text",
help="Column containing text to embed (default: text)",
)
parser.add_argument(
"--output-column",
type=str,
default="embeddings",
help="Column name for generated embeddings (default: embeddings)",
)
parser.add_argument(
"--max-samples",
type=int,
help="Maximum number of samples to process (default: all)",
)
parser.add_argument(
"--input-truncation-len",
type=int,
help="Maximum input length (default: model's default)",
)
parser.add_argument(
"--tensor-parallel-size",
type=int,
help="Number of GPUs to use (default: auto-detect)",
)
parser.add_argument(
"--gpu-memory-utilization",
type=float,
default=0.90,
help="GPU memory utilization factor (default: 0.90)",
)
parser.add_argument(
"--hf-token",
type=str,
help="Hugging Face token (can also use HF_TOKEN env var)",
)
args = parser.parse_args()
main(
src_dataset_hub_id=args.src_dataset_hub_id,
output_dataset_hub_id=args.output_dataset_hub_id,
model_id=args.model_id,
input_column=args.input_column,
output_column=args.output_column,
gpu_memory_utilization=args.gpu_memory_utilization,
input_truncation_len=args.input_truncation_len,
tensor_parallel_size=args.tensor_parallel_size,
max_samples=args.max_samples,
hf_token=args.hf_token,
)
else:
# Show HF Jobs example when run without arguments
print("""
vLLM Response Generation Script
==============================
This script requires arguments. For usage information:
uv run generate-responses.py --help
Example HF Jobs command with multi-GPU:
# If you're logged in with huggingface-cli, token will be auto-detected
hf jobs uv run \\
--flavor l4x4 \\
https://huggingface.co/datasets/uv-scripts/vllm/raw/main/generate-responses.py \\
username/input-dataset \\
username/output-dataset \\
--messages-column messages \\
--model-id Qwen/Qwen3-30B-A3B-Instruct-2507 \\
--temperature 0.7 \\
--max-tokens 16384
""")
|