File size: 11,271 Bytes
93cb9bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# /// script
# requires-python = ">=3.10"
# dependencies = [
#     "datasets",
#     "huggingface-hub[hf_transfer]",
#     "flashinfer-python",
#     "hf-xet>= 1.1.7",
#     "torch",
#     "transformers",
#     "vllm",
# ]
#
# ///
"""
Generate responses for prompts in a dataset using vLLM for efficient GPU inference.

This script loads a dataset from Hugging Face Hub containing chat-formatted messages,
applies the model's chat template, generates responses using vLLM, and saves the
results back to the Hub with a comprehensive dataset card.

Example usage:
    # Local execution with auto GPU detection
    uv run generate-responses.py \\
        username/input-dataset \\
        username/output-dataset \\
        --messages-column messages

    # With custom model and sampling parameters
    uv run generate-responses.py \\
        username/input-dataset \\
        username/output-dataset \\
        --model-id meta-llama/Llama-3.1-8B-Instruct \\
        --temperature 0.9 \\
        --top-p 0.95 \\
        --max-tokens 2048

    # HF Jobs execution (see script output for full command)
    hf jobs uv run --flavor a100x4 ...
"""

import argparse
import logging
import os
import sys
from datetime import datetime
from typing import Optional

from datasets import load_dataset
from huggingface_hub import get_token, login
from torch import cuda
from tqdm.auto import tqdm
from transformers import AutoTokenizer
from vllm import LLM
from dotenv import load_dotenv

# Enable HF Transfer for faster downloads
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"

logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)


def check_gpu_availability() -> int:
    """Check if CUDA is available and return the number of GPUs."""
    if not cuda.is_available():
        logger.error("CUDA is not available. This script requires a GPU.")
        logger.error(
            "Please run on a machine with NVIDIA GPU or use HF Jobs with GPU flavor."
        )
        sys.exit(1)

    num_gpus = cuda.device_count()
    for i in range(num_gpus):
        gpu_name = cuda.get_device_name(i)
        gpu_memory = cuda.get_device_properties(i).total_memory / 1024**3
        logger.info(f"GPU {i}: {gpu_name} with {gpu_memory:.1f} GB memory")

    return num_gpus

def main(
    src_dataset_hub_id: str,
    output_dataset_hub_id: str,
    model_id: str = "Qwen/Qwen3-Embedding-0.6B",
    input_column: str = "text",
    output_column: str = "embeddings",
    gpu_memory_utilization: float = 0.90,
    input_truncation_len: Optional[int] = None,
    tensor_parallel_size: Optional[int] = None,
    max_samples: Optional[int] = None,
    hf_token: Optional[str] = None,
):
    """
    Main generation pipeline.

    Args:
        src_dataset_hub_id: Input dataset on Hugging Face Hub
        output_dataset_hub_id: Where to save results on Hugging Face Hub
        model_id: Hugging Face model ID for embedding generation
        input_column: Column name containing documents to embed
        output_column: Column name for generated embeddings
        gpu_memory_utilization: GPU memory utilization factor
        input_truncation_len: Maximum input length (None uses model default)
        tensor_parallel_size: Number of GPUs to use (auto-detect if None)
        max_samples: Maximum number of samples to process (None for all)
        hf_token: Hugging Face authentication token
    """
    generation_start_time = datetime.now().isoformat()

    # GPU check and configuration
    num_gpus = check_gpu_availability()
    if tensor_parallel_size is None:
        tensor_parallel_size = num_gpus
        logger.info(
            f"Auto-detected {num_gpus} GPU(s), using tensor_parallel_size={tensor_parallel_size}"
        )
    else:
        logger.info(f"Using specified tensor_parallel_size={tensor_parallel_size}")
        if tensor_parallel_size > num_gpus:
            logger.warning(
                f"Requested {tensor_parallel_size} GPUs but only {num_gpus} available"
            )

    # Authentication - try multiple methods
    load_dotenv()
    HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") or get_token()

    if not HF_TOKEN:
        logger.error("No HuggingFace token found. Please provide token via:")
        logger.error("  1. --hf-token argument")
        logger.error("  2. HF_TOKEN environment variable")
        logger.error("  3. Run 'huggingface-cli login' or use login() in Python")
        sys.exit(1)

    logger.info("HuggingFace token found, authenticating...")
    login(token=HF_TOKEN)

    # Initialize vLLM
    logger.info(f"Loading model: {model_id}")
    vllm_kwargs = {
        "model": model_id,
        "tensor_parallel_size": tensor_parallel_size,
        "gpu_memory_utilization": gpu_memory_utilization,
        "task": "embed",
        "max_model_len": input_truncation_len + 128,
    }

    llm = LLM(**vllm_kwargs)

    # Load tokenizer for chat template
    logger.info("Loading tokenizer...")
    tokenizer = AutoTokenizer.from_pretrained(model_id)

    # Load dataset
    logger.info(f"Loading dataset: {src_dataset_hub_id}")
    dataset = load_dataset(src_dataset_hub_id, split="train")

    # Apply max_samples if specified
    if max_samples is not None and max_samples < len(dataset):
        logger.info(f"Limiting dataset to {max_samples} samples")
        dataset = dataset.select(range(max_samples))

    total_examples = len(dataset)
    logger.info(f"Dataset loaded with {total_examples:,} examples")

    # Determine which column to use and validate
    if input_column not in dataset.column_names:
        logger.error(
            f"Column '{input_column}' not found. Available columns: {dataset.column_names}"
        )
        sys.exit(1)
    logger.info(f"Using input column mode with column: '{input_column}'")

    # Process documents and truncate if specified
    logger.info("Preparing documents...")
    all_documents = []
    for example in tqdm(dataset, desc="Processing documents"):
        document = f"# {example['title_dl']}\n\nFrom: {example['source_url']}\n\n{example[input_column]}"
        # apply tokenizer to the document, then truncate using token counts
        if input_truncation_len is not None:
            tokens = tokenizer.encode(document)
            if len(tokens) > input_truncation_len:
                document = tokenizer.decode(tokens[:input_truncation_len])
        all_documents.append(document) # this is a list of strings

    # Generate embeddings - vLLM handles batching internally
    logger.info("vLLM will handle batching and scheduling automatically")
    outputs = llm.embed(all_documents)

    # Extract generated embeddings and create full response list
    logger.info("Extracting generated embeddings...")
    embeddings = [o.outputs.embedding for o in outputs]

    # Add responses to dataset
    logger.info("Adding responses to dataset...")
    dataset = dataset.add_column(output_column, embeddings)

    # Push dataset to hub
    logger.info(f"Pushing dataset to: {output_dataset_hub_id}")
    dataset.push_to_hub(output_dataset_hub_id, token=HF_TOKEN)

    logger.info("✅ Embedding generation complete!")
    logger.info(
        f"Dataset available at: https://huggingface.co/datasets/{output_dataset_hub_id}"
    )


if __name__ == "__main__":
    if len(sys.argv) > 1:
        parser = argparse.ArgumentParser(
            description="Generate responses for dataset prompts using vLLM",
            formatter_class=argparse.RawDescriptionHelpFormatter,
            epilog="""
Examples:
  # Basic usage with default Qwen model
  uv run generate-embeddings-uv-vllm.py input-dataset output-dataset
  
  # With custom model and parameters
  uv run generate-embeddings-uv-vllm.py input-dataset output-dataset \\
    --model-id Qwen/Qwen3-Embedding-0.6B \\
    --input-column text \\
    --output-column embeddings
  
  # Force specific GPU configuration
  uv run generate-embeddings-uv-vllm.py input-dataset output-dataset \\
    --tensor-parallel-size 2 \\
    --gpu-memory-utilization 0.95
  
  # Using environment variable for token
  HF_TOKEN=hf_xxx uv run generate-embeddings-uv-vllm.py input-dataset output-dataset
            """,
        )

        parser.add_argument(
            "src_dataset_hub_id",
            help="Input dataset on Hugging Face Hub (e.g., username/dataset-name)",
        )
        parser.add_argument(
            "output_dataset_hub_id", help="Output dataset name on Hugging Face Hub"
        )
        parser.add_argument(
            "--model-id",
            type=str,
            default="Qwen/Qwen3-Embedding-0.6B",
            help="Model to use for generation (default: Qwen3-Embedding-0.6B)",
        )
        parser.add_argument(
            "--input-column",
            type=str,
            default="text",
            help="Column containing text to embed (default: text)",
        )
        parser.add_argument(
            "--output-column",
            type=str,
            default="embeddings",
            help="Column name for generated embeddings (default: embeddings)",
        )
        parser.add_argument(
            "--max-samples",
            type=int,
            help="Maximum number of samples to process (default: all)",
        )
        parser.add_argument(
            "--input-truncation-len",
            type=int,
            help="Maximum input length (default: model's default)",
        )
        parser.add_argument(
            "--tensor-parallel-size",
            type=int,
            help="Number of GPUs to use (default: auto-detect)",
        )
        parser.add_argument(
            "--gpu-memory-utilization",
            type=float,
            default=0.90,
            help="GPU memory utilization factor (default: 0.90)",
        )
        parser.add_argument(
            "--hf-token",
            type=str,
            help="Hugging Face token (can also use HF_TOKEN env var)",
        )
        args = parser.parse_args()

        main(
            src_dataset_hub_id=args.src_dataset_hub_id,
            output_dataset_hub_id=args.output_dataset_hub_id,
            model_id=args.model_id,
            input_column=args.input_column,
            output_column=args.output_column,
            gpu_memory_utilization=args.gpu_memory_utilization,
            input_truncation_len=args.input_truncation_len,
            tensor_parallel_size=args.tensor_parallel_size,
            max_samples=args.max_samples,
            hf_token=args.hf_token,
        )
    else:
        # Show HF Jobs example when run without arguments
        print("""
vLLM Response Generation Script
==============================

This script requires arguments. For usage information:
    uv run generate-responses.py --help

Example HF Jobs command with multi-GPU:
    # If you're logged in with huggingface-cli, token will be auto-detected
    hf jobs uv run \\
        --flavor l4x4 \\
        https://huggingface.co/datasets/uv-scripts/vllm/raw/main/generate-responses.py \\
        username/input-dataset \\
        username/output-dataset \\
        --messages-column messages \\
        --model-id Qwen/Qwen3-30B-A3B-Instruct-2507 \\
        --temperature 0.7 \\
        --max-tokens 16384
        """)