# /// script # requires-python = ">=3.10" # dependencies = [ # "datasets", # "huggingface-hub[hf_transfer]", # "flashinfer-python", # "hf-xet>= 1.1.7", # "torch", # "transformers", # "vllm", # ] # # /// """ Generate responses for prompts in a dataset using vLLM for efficient GPU inference. This script loads a dataset from Hugging Face Hub containing chat-formatted messages, applies the model's chat template, generates responses using vLLM, and saves the results back to the Hub with a comprehensive dataset card. Example usage: # Local execution with auto GPU detection uv run generate-responses.py \\ username/input-dataset \\ username/output-dataset \\ --messages-column messages # With custom model and sampling parameters uv run generate-responses.py \\ username/input-dataset \\ username/output-dataset \\ --model-id meta-llama/Llama-3.1-8B-Instruct \\ --temperature 0.9 \\ --top-p 0.95 \\ --max-tokens 2048 # HF Jobs execution (see script output for full command) hf jobs uv run --flavor a100x4 ... """ import argparse import logging import os import sys from datetime import datetime from typing import Optional from datasets import load_dataset from huggingface_hub import get_token, login from torch import cuda from tqdm.auto import tqdm from transformers import AutoTokenizer from vllm import LLM from dotenv import load_dotenv # Enable HF Transfer for faster downloads os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" logging.basicConfig( level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" ) logger = logging.getLogger(__name__) def check_gpu_availability() -> int: """Check if CUDA is available and return the number of GPUs.""" if not cuda.is_available(): logger.error("CUDA is not available. This script requires a GPU.") logger.error( "Please run on a machine with NVIDIA GPU or use HF Jobs with GPU flavor." ) sys.exit(1) num_gpus = cuda.device_count() for i in range(num_gpus): gpu_name = cuda.get_device_name(i) gpu_memory = cuda.get_device_properties(i).total_memory / 1024**3 logger.info(f"GPU {i}: {gpu_name} with {gpu_memory:.1f} GB memory") return num_gpus def main( src_dataset_hub_id: str, output_dataset_hub_id: str, model_id: str = "Qwen/Qwen3-Embedding-0.6B", input_column: str = "text", output_column: str = "embeddings", gpu_memory_utilization: float = 0.90, input_truncation_len: Optional[int] = None, tensor_parallel_size: Optional[int] = None, max_samples: Optional[int] = None, hf_token: Optional[str] = None, ): """ Main generation pipeline. Args: src_dataset_hub_id: Input dataset on Hugging Face Hub output_dataset_hub_id: Where to save results on Hugging Face Hub model_id: Hugging Face model ID for embedding generation input_column: Column name containing documents to embed output_column: Column name for generated embeddings gpu_memory_utilization: GPU memory utilization factor input_truncation_len: Maximum input length (None uses model default) tensor_parallel_size: Number of GPUs to use (auto-detect if None) max_samples: Maximum number of samples to process (None for all) hf_token: Hugging Face authentication token """ generation_start_time = datetime.now().isoformat() # GPU check and configuration num_gpus = check_gpu_availability() if tensor_parallel_size is None: tensor_parallel_size = num_gpus logger.info( f"Auto-detected {num_gpus} GPU(s), using tensor_parallel_size={tensor_parallel_size}" ) else: logger.info(f"Using specified tensor_parallel_size={tensor_parallel_size}") if tensor_parallel_size > num_gpus: logger.warning( f"Requested {tensor_parallel_size} GPUs but only {num_gpus} available" ) # Authentication - try multiple methods load_dotenv() HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") or get_token() if not HF_TOKEN: logger.error("No HuggingFace token found. Please provide token via:") logger.error(" 1. --hf-token argument") logger.error(" 2. HF_TOKEN environment variable") logger.error(" 3. Run 'huggingface-cli login' or use login() in Python") sys.exit(1) logger.info("HuggingFace token found, authenticating...") login(token=HF_TOKEN) # Initialize vLLM logger.info(f"Loading model: {model_id}") vllm_kwargs = { "model": model_id, "tensor_parallel_size": tensor_parallel_size, "gpu_memory_utilization": gpu_memory_utilization, "task": "embed", "max_model_len": input_truncation_len + 128, } llm = LLM(**vllm_kwargs) # Load tokenizer for chat template logger.info("Loading tokenizer...") tokenizer = AutoTokenizer.from_pretrained(model_id) # Load dataset logger.info(f"Loading dataset: {src_dataset_hub_id}") dataset = load_dataset(src_dataset_hub_id, split="train") # Apply max_samples if specified if max_samples is not None and max_samples < len(dataset): logger.info(f"Limiting dataset to {max_samples} samples") dataset = dataset.select(range(max_samples)) total_examples = len(dataset) logger.info(f"Dataset loaded with {total_examples:,} examples") # Determine which column to use and validate if input_column not in dataset.column_names: logger.error( f"Column '{input_column}' not found. Available columns: {dataset.column_names}" ) sys.exit(1) logger.info(f"Using input column mode with column: '{input_column}'") # Process documents and truncate if specified logger.info("Preparing documents...") all_documents = [] for example in tqdm(dataset, desc="Processing documents"): document = f"# {example['title_dl']}\n\nFrom: {example['source_url']}\n\n{example[input_column]}" # apply tokenizer to the document, then truncate using token counts if input_truncation_len is not None: tokens = tokenizer.encode(document) if len(tokens) > input_truncation_len: document = tokenizer.decode(tokens[:input_truncation_len]) all_documents.append(document) # this is a list of strings # Generate embeddings - vLLM handles batching internally logger.info("vLLM will handle batching and scheduling automatically") outputs = llm.embed(all_documents) # Extract generated embeddings and create full response list logger.info("Extracting generated embeddings...") embeddings = [o.outputs.embedding for o in outputs] # Add responses to dataset logger.info("Adding responses to dataset...") dataset = dataset.add_column(output_column, embeddings) # Push dataset to hub logger.info(f"Pushing dataset to: {output_dataset_hub_id}") dataset.push_to_hub(output_dataset_hub_id, token=HF_TOKEN) logger.info("✅ Embedding generation complete!") logger.info( f"Dataset available at: https://huggingface.co/datasets/{output_dataset_hub_id}" ) if __name__ == "__main__": if len(sys.argv) > 1: parser = argparse.ArgumentParser( description="Generate responses for dataset prompts using vLLM", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=""" Examples: # Basic usage with default Qwen model uv run generate-embeddings-uv-vllm.py input-dataset output-dataset # With custom model and parameters uv run generate-embeddings-uv-vllm.py input-dataset output-dataset \\ --model-id Qwen/Qwen3-Embedding-0.6B \\ --input-column text \\ --output-column embeddings # Force specific GPU configuration uv run generate-embeddings-uv-vllm.py input-dataset output-dataset \\ --tensor-parallel-size 2 \\ --gpu-memory-utilization 0.95 # Using environment variable for token HF_TOKEN=hf_xxx uv run generate-embeddings-uv-vllm.py input-dataset output-dataset """, ) parser.add_argument( "src_dataset_hub_id", help="Input dataset on Hugging Face Hub (e.g., username/dataset-name)", ) parser.add_argument( "output_dataset_hub_id", help="Output dataset name on Hugging Face Hub" ) parser.add_argument( "--model-id", type=str, default="Qwen/Qwen3-Embedding-0.6B", help="Model to use for generation (default: Qwen3-Embedding-0.6B)", ) parser.add_argument( "--input-column", type=str, default="text", help="Column containing text to embed (default: text)", ) parser.add_argument( "--output-column", type=str, default="embeddings", help="Column name for generated embeddings (default: embeddings)", ) parser.add_argument( "--max-samples", type=int, help="Maximum number of samples to process (default: all)", ) parser.add_argument( "--input-truncation-len", type=int, help="Maximum input length (default: model's default)", ) parser.add_argument( "--tensor-parallel-size", type=int, help="Number of GPUs to use (default: auto-detect)", ) parser.add_argument( "--gpu-memory-utilization", type=float, default=0.90, help="GPU memory utilization factor (default: 0.90)", ) parser.add_argument( "--hf-token", type=str, help="Hugging Face token (can also use HF_TOKEN env var)", ) args = parser.parse_args() main( src_dataset_hub_id=args.src_dataset_hub_id, output_dataset_hub_id=args.output_dataset_hub_id, model_id=args.model_id, input_column=args.input_column, output_column=args.output_column, gpu_memory_utilization=args.gpu_memory_utilization, input_truncation_len=args.input_truncation_len, tensor_parallel_size=args.tensor_parallel_size, max_samples=args.max_samples, hf_token=args.hf_token, ) else: # Show HF Jobs example when run without arguments print(""" vLLM Response Generation Script ============================== This script requires arguments. For usage information: uv run generate-responses.py --help Example HF Jobs command with multi-GPU: # If you're logged in with huggingface-cli, token will be auto-detected hf jobs uv run \\ --flavor l4x4 \\ https://huggingface.co/datasets/uv-scripts/vllm/raw/main/generate-responses.py \\ username/input-dataset \\ username/output-dataset \\ --messages-column messages \\ --model-id Qwen/Qwen3-30B-A3B-Instruct-2507 \\ --temperature 0.7 \\ --max-tokens 16384 """)