youssefbelghmi commited on
Commit
22fb00d
·
verified ·
1 Parent(s): 58c635d

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +80 -30
README.md CHANGED
@@ -1,32 +1,82 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: dataset
5
- dtype: string
6
- - name: id
7
- dtype: string
8
- - name: question
9
- dtype: string
10
- - name: choices
11
- sequence: string
12
- - name: answer
13
- dtype: string
14
- - name: support
15
- dtype: string
16
- splits:
17
- - name: train
18
- num_bytes: 12554162.663742885
19
- num_examples: 25389
20
- - name: validation
21
- num_bytes: 2215731.336257114
22
- num_examples: 4481
23
- download_size: 8989707
24
- dataset_size: 14769894.0
25
- configs:
26
- - config_name: default
27
- data_files:
28
- - split: train
29
- path: data/train-*
30
- - split: validation
31
- path: data/validation-*
32
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language:
5
+ - en
6
+ license: mit
7
+ multilinguality:
8
+ - monolingual
9
+ size_categories:
10
+ - 10K<n<100K
11
+ task_categories:
12
+ - multiple-choice
13
+ task_ids:
14
+ - multiple-choice-qa
15
+ pretty_name: MNLP M3 MCQA Dataset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  ---
17
+
18
+ # MNLP M3 MCQA Dataset
19
+
20
+ The **MNLP M3 MCQA Dataset** is a carefully curated collection of **Multiple-Choice Question Answering (MCQA)** examples, unified from several academic and benchmark datasets.
21
+
22
+ Developed as part of the *CS-552: Modern NLP* course at EPFL (Spring 2025), this dataset is designed for training and evaluating models on multiple-choice QA tasks, particularly in the **STEM** and general knowledge domains.
23
+
24
+ ## Key Features
25
+
26
+ - ~30,000 MCQA questions
27
+ - 6 diverse sources: `SciQ`, `OpenBookQA`, `MathQA`, `ARC-Easy`, `ARC-Challenge`, and `MedMCQA`
28
+ - Each question has exactly 4 options (A–D) and one correct answer
29
+ - Covers a wide range of topics: science, technology, engineering, mathematics, and general knowledge
30
+
31
+ ## Dataset Structure
32
+
33
+ Each example is a dictionary with the following fields:
34
+
35
+ | Field | Type | Description |
36
+ |-----------|----------|---------------------------------------------------|
37
+ | `dataset` | `string` | Source dataset (`sciq`, `openbookqa`, etc.) |
38
+ | `id` | `string` | Unique identifier for the question |
39
+ | `question`| `string` | The question text |
40
+ | `choices` | `list` | List of 4 answer options (corresponding to A–D) |
41
+ | `answer` | `string` | The correct option, as a letter: `"A"`, `"B"`, `"C"`, or `"D"` |
42
+ | `support` | `string` | A brief explanation or fact supporting the correct answer when available |
43
+
44
+ ```markdown
45
+ Example:
46
+ ```json
47
+ {
48
+ "dataset": "sciq",
49
+ "id": "sciq_01_00042",
50
+ "question": "What does a seismograph measure?",
51
+ "choices": ["Earthquakes", "Rainfall", "Sunlight", "Temperature"],
52
+ "answer": "A",
53
+ "support": "A seismograph is an instrument that detects and records earthquakes."
54
+ }
55
+ ```
56
+
57
+ ## Source Datasets
58
+
59
+ This dataset combines multiple high-quality MCQA sources to support research and fine-tuning in STEM education and reasoning. The full corpus contains **29,870 multiple-choice questions** from the following sources:
60
+
61
+ | Source (Hugging Face) | Name | Size | Description & Role in the Dataset |
62
+ | ------------------------------------------- | ------------------- | ------ | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
63
+ | `allenai/sciq` | **SciQ** | 11,679 | **Science questions** (Physics, Chemistry, Biology, Earth science). Crowdsourced with 4 answer choices and optional supporting evidence. Used to provide **well-balanced, factual STEM questions** at a middle/high-school level. |
64
+ | `allenai/openbookqa` | **OpenBookQA** | 4,957 | Science exam-style questions requiring **multi-step reasoning** and use of **commonsense or external knowledge**. Contributes more **challenging** and **inference-based** questions. |
65
+ | `allenai/math_qa` | **MathQA** | 5,000 | Subsample of quantitative math word problems derived from AQuA-RAT, annotated with structured answer options. Introduces **numerical reasoning** and **problem-solving** components into the dataset. |
66
+ | `allenai/ai2_arc` (config: `ARC-Easy`) | **ARC-Easy** | 2,140 | Science questions at the middle school level. Useful for testing **basic STEM understanding** and **factual recall**. Filtered to retain only valid 4-choice entries. |
67
+ | `allenai/ai2_arc` (config: `ARC-Challenge`) | **ARC-Challenge** | 1,094 | More difficult science questions requiring **reasoning and inference**. Widely used as a benchmark for evaluating LLMs. Also filtered for clean MCQA format compatibility. |
68
+ | `openlifescienceai/medmcqa` | **MedMCQA** | 5,000 | A subsample of multiple-choice questions on **medical topics** from various exams, filtered for a single-choice format. Contains real-world and domain-specific **clinical reasoning** questions covering various medical disciplines. |
69
+
70
+ ## Intended Applications and Structure
71
+
72
+ This dataset is split into three parts:
73
+
74
+ - `train` (~70%) — for training MCQA models
75
+ - `validation` (~15%) — for tuning and monitoring performance during training
76
+ - `test` (~15%) — for final evaluation on unseen questions
77
+
78
+ It is suitable for multiple-choice question answering tasks, especially in the **STEM** domain (Science, Technology, Engineering, Mathematics).
79
+
80
+ ## Author
81
+
82
+ This dataset was created and published by [Youssef Belghmi](https://huggingface.co/youssefbelghmi) as part of the *CS-552: Modern NLP* course at EPFL (Spring 2025).