--- library_name: transformers license: apache-2.0 base_model: EuroBERT/EuroBERT-210m tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: fineweb-swe_latn-quality-transformer results: [] --- # fineweb-swe_latn-quality-transformer This model is a fine-tuned version of [EuroBERT/EuroBERT-210m](https://huggingface.co/EuroBERT/EuroBERT-210m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5507 - F1: 0.7041 - Accuracy: 0.7079 - Confusion Matrix: 53 17 35 73 - High Precision: 0.6023 - High Recall: 0.7571 - High F1: 0.6709 - Low Precision: 0.8111 - Low Recall: 0.6759 - Low F1: 0.7374 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Confusion Matrix | High Precision | High Recall | High F1 | Low Precision | Low Recall | Low F1 | |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:----------------:|:--------------:|:-----------:|:-------:|:-------------:|:----------:|:------:| | No log | 1.0 | 5 | 0.7080 | 0.4341 | 0.4719 | 19 51 43 65 | 0.3065 | 0.2714 | 0.2879 | 0.5603 | 0.6019 | 0.5804 | | 0.8946 | 2.0 | 10 | 0.8359 | 0.3776 | 0.6067 | 0 70 0 108 | 0.0 | 0.0 | 0.0 | 0.6067 | 1.0 | 0.7552 | | 0.8946 | 3.0 | 15 | 0.6091 | 0.6435 | 0.6461 | 50 20 43 65 | 0.5376 | 0.7143 | 0.6135 | 0.7647 | 0.6019 | 0.6736 | | 0.6111 | 4.0 | 20 | 0.7509 | 0.3776 | 0.6067 | 0 70 0 108 | 0.0 | 0.0 | 0.0 | 0.6067 | 1.0 | 0.7552 | | 0.6111 | 5.0 | 25 | 0.7014 | 0.4200 | 0.6180 | 3 67 1 107 | 0.75 | 0.0429 | 0.0811 | 0.6149 | 0.9907 | 0.7589 | | 0.5827 | 6.0 | 30 | 0.5507 | 0.7041 | 0.7079 | 53 17 35 73 | 0.6023 | 0.7571 | 0.6709 | 0.8111 | 0.6759 | 0.7374 | | 0.5827 | 7.0 | 35 | 0.5907 | 0.6963 | 0.6966 | 59 11 43 65 | 0.5784 | 0.8429 | 0.6860 | 0.8553 | 0.6019 | 0.7065 | | 0.3865 | 8.0 | 40 | 0.6183 | 0.6468 | 0.7079 | 26 44 8 100 | 0.7647 | 0.3714 | 0.5 | 0.6944 | 0.9259 | 0.7937 | | 0.3865 | 9.0 | 45 | 1.1120 | 0.5645 | 0.6685 | 16 54 5 103 | 0.7619 | 0.2286 | 0.3516 | 0.6561 | 0.9537 | 0.7774 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0