--- library_name: peft language: - tr license: mit base_model: openai/whisper-large-v3-turbo tags: - asr - whisper - lora - Turkish - tr - generated_from_trainer datasets: - dcl-ai-team/Cagri-kayitlar-relabeled-06s-200ms-padded metrics: - wer model-index: - name: v3-turbo-low-lora-8805-qkvo results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Cagri-kayitlar-relabeled-06s-200ms-padded type: dcl-ai-team/Cagri-kayitlar-relabeled-06s-200ms-padded metrics: - type: wer value: 28.762686244871517 name: Wer --- # v3-turbo-low-lora-8805-qkvo This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the Cagri-kayitlar-relabeled-06s-200ms-padded dataset. It achieves the following results on the evaluation set: - Loss: 0.3629 - Wer: 28.7627 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 1.1764 | 1.0482 | 500 | 0.4268 | 32.1961 | | 0.3681 | 2.0964 | 1000 | 0.3905 | 31.4835 | | 0.3222 | 3.1447 | 1500 | 0.3774 | 30.5981 | | 0.3158 | 4.1929 | 2000 | 0.3698 | 29.2377 | | 0.2983 | 5.2411 | 2500 | 0.3670 | 28.9786 | | 0.283 | 6.2893 | 3000 | 0.3649 | 28.8059 | | 0.2714 | 7.3375 | 3500 | 0.3628 | 28.4172 | | 0.263 | 8.3857 | 4000 | 0.3629 | 28.5468 | | 0.2656 | 9.4340 | 4500 | 0.3629 | 28.7627 | | 0.2607 | 10.4822 | 5000 | 0.3629 | 28.7627 | ### Framework versions - PEFT 0.14.0 - Transformers 4.48.3 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.21.0