|
import matplotlib |
|
import numpy as np |
|
import torch |
|
from transformers import SamModel, SamProcessor, pipeline |
|
|
|
|
|
checkpoint = "google/owlvit-base-patch16" |
|
detector = pipeline(model=checkpoint, task="zero-shot-object-detection", device="cuda") |
|
sam_model = SamModel.from_pretrained("facebook/sam-vit-base").cuda() |
|
sam_processor = SamProcessor.from_pretrained("facebook/sam-vit-base") |
|
|
|
|
|
image_dims = (224, 224) |
|
|
|
|
|
def get_bounding_boxes(img, prompt="the black robotic gripper"): |
|
predictions = detector(img, candidate_labels=[prompt], threshold=0.01) |
|
|
|
return predictions |
|
|
|
|
|
def show_box(box, ax, meta, color): |
|
x0, y0 = box["xmin"], box["ymin"] |
|
w, h = box["xmax"] - box["xmin"], box["ymax"] - box["ymin"] |
|
ax.add_patch( |
|
matplotlib.patches.FancyBboxPatch((x0, y0), w, h, edgecolor=color, facecolor=(0, 0, 0, 0), lw=2, label="hehe") |
|
) |
|
ax.text(x0, y0 + 10, "{:.3f}".format(meta["score"]), color="white") |
|
|
|
|
|
def get_median(mask, p): |
|
row_sum = np.sum(mask, axis=1) |
|
cumulative_sum = np.cumsum(row_sum) |
|
|
|
if p >= 1.0: |
|
p = 1 |
|
|
|
total_sum = np.sum(row_sum) |
|
threshold = p * total_sum |
|
|
|
return np.argmax(cumulative_sum >= threshold) |
|
|
|
|
|
def get_gripper_mask(img, pred): |
|
box = [ |
|
round(pred["box"]["xmin"], 2), |
|
round(pred["box"]["ymin"], 2), |
|
round(pred["box"]["xmax"], 2), |
|
round(pred["box"]["ymax"], 2), |
|
] |
|
|
|
inputs = sam_processor(img, input_boxes=[[[box]]], return_tensors="pt") |
|
|
|
for k in inputs.keys(): |
|
inputs[k] = inputs[k].cuda() |
|
with torch.no_grad(): |
|
outputs = sam_model(**inputs) |
|
|
|
mask = ( |
|
sam_processor.image_processor.post_process_masks( |
|
outputs.pred_masks, inputs["original_sizes"], inputs["reshaped_input_sizes"] |
|
)[0][0][0] |
|
.cpu() |
|
.numpy() |
|
) |
|
|
|
return mask |
|
|
|
|
|
def sq(w, h): |
|
return np.concatenate( |
|
[ |
|
(np.arange(w * h).reshape(h, w) % w)[:, :, None], |
|
(np.arange(w * h).reshape(h, w) // w)[:, :, None], |
|
], |
|
axis=-1, |
|
) |
|
|
|
|
|
def mask_to_pos_weighted(mask): |
|
pos = sq(*image_dims) |
|
|
|
weight = pos[:, :, 0] + pos[:, :, 1] |
|
weight = weight * weight |
|
|
|
x = np.sum(mask * pos[:, :, 0] * weight) / np.sum(mask * weight) |
|
y = get_median(mask * weight, 0.95) |
|
|
|
return x, y |
|
|
|
|
|
def mask_to_pos_naive(mask): |
|
pos = sq(*image_dims) |
|
weight = pos[:, :, 0] + pos[:, :, 1] |
|
min_pos = np.argmax((weight * mask).flatten()) |
|
|
|
return min_pos % image_dims[0] - (image_dims[0] / 16), min_pos // image_dims[0] - (image_dims[0] / 24) |
|
|
|
|
|
def get_gripper_pos_raw(img): |
|
|
|
predictions = get_bounding_boxes(img) |
|
|
|
if len(predictions) > 0: |
|
mask = get_gripper_mask(img, predictions[0]) |
|
pos = mask_to_pos_naive(mask) |
|
else: |
|
mask = np.zeros(image_dims) |
|
pos = (-1, -1) |
|
predictions = [None] |
|
|
|
|
|
return (int(pos[0]*224/image_dims[0]), int(pos[1]*224/image_dims[1])), mask, predictions[0] |
|
|
|
|
|
if __name__ == "__main__": |
|
pass |
|
|