Create handler.py
Browse files- handler.py +128 -0
    	
        handler.py
    ADDED
    
    | @@ -0,0 +1,128 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import Dict, List, Any
         | 
| 2 | 
            +
            import logger
         | 
| 3 | 
            +
            import spaces
         | 
| 4 | 
            +
            import gradio as gr
         | 
| 5 | 
            +
            import json
         | 
| 6 | 
            +
            import torch
         | 
| 7 | 
            +
            import wavio
         | 
| 8 | 
            +
            from tqdm import tqdm
         | 
| 9 | 
            +
            from huggingface_hub import snapshot_download
         | 
| 10 | 
            +
            from models import AudioDiffusion, DDPMScheduler
         | 
| 11 | 
            +
            from audioldm.audio.stft import TacotronSTFT
         | 
| 12 | 
            +
            from audioldm.variational_autoencoder import AutoencoderKL
         | 
| 13 | 
            +
            from pydub import AudioSegment
         | 
| 14 | 
            +
            from gradio import Markdown
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            import torch
         | 
| 17 | 
            +
            #from diffusers.models.autoencoder_kl import AutoencoderKL
         | 
| 18 | 
            +
            from diffusers.models.unet_2d_condition import UNet2DConditionModel
         | 
| 19 | 
            +
            from diffusers import DiffusionPipeline,AudioPipelineOutput
         | 
| 20 | 
            +
            from transformers import CLIPTextModel, T5EncoderModel, AutoModel, T5Tokenizer, T5TokenizerFast
         | 
| 21 | 
            +
            from typing import Union
         | 
| 22 | 
            +
            from diffusers.utils.torch_utils import randn_tensor
         | 
| 23 | 
            +
            from tqdm import tqdm
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            class Tango:
         | 
| 26 | 
            +
                def __init__(self, name="declare-lab/tango2", device=device_selection):
         | 
| 27 | 
            +
                    
         | 
| 28 | 
            +
                    path = snapshot_download(repo_id=name)
         | 
| 29 | 
            +
                    
         | 
| 30 | 
            +
                    vae_config = json.load(open("{}/vae_config.json".format(path)))
         | 
| 31 | 
            +
                    stft_config = json.load(open("{}/stft_config.json".format(path)))
         | 
| 32 | 
            +
                    main_config = json.load(open("{}/main_config.json".format(path)))
         | 
| 33 | 
            +
                    
         | 
| 34 | 
            +
                    self.vae = AutoencoderKL(**vae_config).to(device)
         | 
| 35 | 
            +
                    self.stft = TacotronSTFT(**stft_config).to(device)
         | 
| 36 | 
            +
                    self.model = AudioDiffusion(**main_config).to(device)
         | 
| 37 | 
            +
                    
         | 
| 38 | 
            +
                    vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location=device)
         | 
| 39 | 
            +
                    stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location=device)
         | 
| 40 | 
            +
                    main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location=device)
         | 
| 41 | 
            +
                    
         | 
| 42 | 
            +
                    self.vae.load_state_dict(vae_weights)
         | 
| 43 | 
            +
                    self.stft.load_state_dict(stft_weights)
         | 
| 44 | 
            +
                    self.model.load_state_dict(main_weights)
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                    print ("Successfully loaded checkpoint from:", name)
         | 
| 47 | 
            +
                    
         | 
| 48 | 
            +
                    self.vae.eval()
         | 
| 49 | 
            +
                    self.stft.eval()
         | 
| 50 | 
            +
                    self.model.eval()
         | 
| 51 | 
            +
                    
         | 
| 52 | 
            +
                    self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder="scheduler")
         | 
| 53 | 
            +
                    
         | 
| 54 | 
            +
                def chunks(self, lst, n):
         | 
| 55 | 
            +
                    """ Yield successive n-sized chunks from a list. """
         | 
| 56 | 
            +
                    for i in range(0, len(lst), n):
         | 
| 57 | 
            +
                        yield lst[i:i + n]
         | 
| 58 | 
            +
                    
         | 
| 59 | 
            +
                def generate(self, prompt, steps=100, guidance=3, samples=1, disable_progress=True):
         | 
| 60 | 
            +
                    """ Genrate audio for a single prompt string. """
         | 
| 61 | 
            +
                    with torch.no_grad():
         | 
| 62 | 
            +
                        latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
         | 
| 63 | 
            +
                        mel = self.vae.decode_first_stage(latents)
         | 
| 64 | 
            +
                        wave = self.vae.decode_to_waveform(mel)
         | 
| 65 | 
            +
                    return wave[0]
         | 
| 66 | 
            +
                
         | 
| 67 | 
            +
                def generate_for_batch(self, prompts, steps=200, guidance=3, samples=1, batch_size=8, disable_progress=True):
         | 
| 68 | 
            +
                    """ Genrate audio for a list of prompt strings. """
         | 
| 69 | 
            +
                    outputs = []
         | 
| 70 | 
            +
                    for k in tqdm(range(0, len(prompts), batch_size)):
         | 
| 71 | 
            +
                        batch = prompts[k: k+batch_size]
         | 
| 72 | 
            +
                        with torch.no_grad():
         | 
| 73 | 
            +
                            latents = self.model.inference(batch, self.scheduler, steps, guidance, samples, disable_progress=disable_progress)
         | 
| 74 | 
            +
                            mel = self.vae.decode_first_stage(latents)
         | 
| 75 | 
            +
                            wave = self.vae.decode_to_waveform(mel)
         | 
| 76 | 
            +
                            outputs += [item for item in wave]
         | 
| 77 | 
            +
                    if samples == 1:
         | 
| 78 | 
            +
                        return outputs
         | 
| 79 | 
            +
                    else:
         | 
| 80 | 
            +
                        return list(self.chunks(outputs, samples))
         | 
| 81 | 
            +
             | 
| 82 | 
            +
            # Initialize TANGO
         | 
| 83 | 
            +
             | 
| 84 | 
            +
             | 
| 85 | 
            +
             | 
| 86 | 
            +
             | 
| 87 | 
            +
            class EndpointHandler():
         | 
| 88 | 
            +
                def __init__(self, path=""):
         | 
| 89 | 
            +
                    # Preload all the elements you are going to need at inference.
         | 
| 90 | 
            +
                    # pseudo:
         | 
| 91 | 
            +
                    self.model= tango(device='cuda')
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
         | 
| 94 | 
            +
                    """
         | 
| 95 | 
            +
                   data args:
         | 
| 96 | 
            +
                        inputs (:obj: `str` | `PIL.Image` | `np.array`)
         | 
| 97 | 
            +
                        kwargs
         | 
| 98 | 
            +
                  Return:
         | 
| 99 | 
            +
                        A :obj:`list` | `dict`: will be serialized and returned
         | 
| 100 | 
            +
                    """
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                    # pseudo
         | 
| 103 | 
            +
                    # self.model(input)
         | 
| 104 | 
            +
                    inputs = data.pop("inputs", data)
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                    logger.info(f"Received incoming request with {data=}")
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                    if "inputs" in data and isinstance(data["inputs"], str):
         | 
| 109 | 
            +
                        prompt = data.pop("inputs")
         | 
| 110 | 
            +
                    elif "prompt" in data and isinstance(data["prompt"], str):
         | 
| 111 | 
            +
                        prompt = data.pop("prompt")
         | 
| 112 | 
            +
                    else:
         | 
| 113 | 
            +
                        raise ValueError(
         | 
| 114 | 
            +
                            "Provided input body must contain either the key `inputs` or `prompt` with the"
         | 
| 115 | 
            +
                            " prompt to use for the image generation, and it needs to be a non-empty string."
         | 
| 116 | 
            +
                        )
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                    parameters = data.pop("parameters", {})
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                    num_inference_steps = parameters.get("num_inference_steps", 30)
         | 
| 121 | 
            +
                    width = parameters.get("width", 1024)
         | 
| 122 | 
            +
                    height = parameters.get("height", 768)
         | 
| 123 | 
            +
                    guidance_scale = parameters.get("guidance_scale", 3.5)
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                    # seed generator (seed cannot be provided as is but via a generator)
         | 
| 126 | 
            +
                    seed = parameters.get("seed", 0)
         | 
| 127 | 
            +
                    generator = torch.manual_seed(seed)
         | 
| 128 | 
            +
                    
         | 

