--- library_name: transformers license: apache-2.0 base_model: dslim/distilbert-NER tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-NER-finetuned-ner results: [] --- # distilbert-NER-finetuned-ner This model is a fine-tuned version of [dslim/distilbert-NER](https://huggingface.co/dslim/distilbert-NER) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0111 - Precision: 0.8892 - Recall: 0.9189 - F1: 0.9038 - Accuracy: 0.9968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 270 | 0.0155 | 0.8292 | 0.8918 | 0.8594 | 0.9952 | | 0.0286 | 2.0 | 540 | 0.0121 | 0.8695 | 0.9198 | 0.8939 | 0.9965 | | 0.0286 | 3.0 | 810 | 0.0111 | 0.8892 | 0.9189 | 0.9038 | 0.9968 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1