docs: Update README with HuggingFace and SGLang instructions
Browse files
README.md
CHANGED
@@ -1,126 +1,148 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
library_name: transformers
|
4 |
-
base_model:
|
5 |
-
- deepseek-ai/DeepSeek-V3.2-Exp-Base
|
6 |
-
---
|
7 |
-
# DeepSeek-V3.2-Exp
|
8 |
-
|
9 |
-
<!-- markdownlint-disable first-line-h1 -->
|
10 |
-
<!-- markdownlint-disable html -->
|
11 |
-
<!-- markdownlint-disable no-duplicate-header -->
|
12 |
-
|
13 |
-
<div align="center">
|
14 |
-
<img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V3" />
|
15 |
-
</div>
|
16 |
-
<hr>
|
17 |
-
<div align="center" style="line-height: 1;">
|
18 |
-
<a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;">
|
19 |
-
<img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/>
|
20 |
-
</a>
|
21 |
-
<a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;">
|
22 |
-
<img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20V3-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
23 |
-
</a>
|
24 |
-
<a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;">
|
25 |
-
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
26 |
-
</a>
|
27 |
-
</div>
|
28 |
-
<div align="center" style="line-height: 1;">
|
29 |
-
<a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;">
|
30 |
-
<img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
|
31 |
-
</a>
|
32 |
-
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;">
|
33 |
-
<img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
34 |
-
</a>
|
35 |
-
<a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;">
|
36 |
-
<img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
37 |
-
</a>
|
38 |
-
</div>
|
39 |
-
<div align="center" style="line-height: 1;">
|
40 |
-
<a href="LICENSE" style="margin: 2px;">
|
41 |
-
<img alt="License" src="https://img.shields.io/badge/License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
|
42 |
-
</a>
|
43 |
-
</div>
|
44 |
-
|
45 |
-
## Introduction
|
46 |
-
|
47 |
-
|
48 |
-
We are excited to announce the official release of DeepSeek-V3.2-Exp, an experimental version of our model. As an intermediate step toward our next-generation architecture, V3.2-Exp builds upon V3.1-Terminus by introducing DeepSeek Sparse Attention—a sparse attention mechanism designed to explore and validate optimizations for training and inference efficiency in long-context scenarios.
|
49 |
-
|
50 |
-
This experimental release represents our ongoing research into more efficient transformer architectures, particularly focusing on improving computational efficiency when processing extended text sequences.
|
51 |
-
|
52 |
-
<div align="center">
|
53 |
-
<img src="assets/cost.png" >
|
54 |
-
</div>
|
55 |
-
|
56 |
-
- DeepSeek Sparse Attention (DSA) achieves fine-grained sparse attention for the first time, delivering substantial improvements in long-context training and inference efficiency while maintaining virtually identical model output quality.
|
57 |
-
|
58 |
-
|
59 |
-
- To rigorously evaluate the impact of introducing sparse attention, we deliberately aligned the training configurations of DeepSeek-V3.2-Exp with V3.1-Terminus. Across public benchmarks in various domains, DeepSeek-V3.2-Exp demonstrates performance on par with V3.1-Terminus.
|
60 |
-
|
61 |
-
|
62 |
-
| Benchmark | DeepSeek-V3.1-Terminus | DeepSeek-V3.2-Exp |
|
63 |
-
| :--- | :---: | :---: |
|
64 |
-
| **Reasoning Mode w/o Tool Use** | | |
|
65 |
-
| MMLU-Pro | 85.0 | 85.0 |
|
66 |
-
| GPQA-Diamond | 80.7 | 79.9 |
|
67 |
-
| Humanity's Last Exam | 21.7 | 19.8 |
|
68 |
-
| LiveCodeBench | 74.9 | 74.1 |
|
69 |
-
| AIME 2025 | 88.4 | 89.3 |
|
70 |
-
| HMMT 2025 | 86.1 | 83.6 |
|
71 |
-
| Codeforces | 2046 | 2121 |
|
72 |
-
| Aider-Polyglot | 76.1 | 74.5 |
|
73 |
-
| **Agentic Tool Use** | | |
|
74 |
-
| BrowseComp | 38.5 | 40.1 |
|
75 |
-
| BrowseComp-zh | 45.0 | 47.9 |
|
76 |
-
| SimpleQA | 96.8 | 97.1 |
|
77 |
-
| SWE Verified | 68.4 | 67.8 |
|
78 |
-
| SWE-bench Multilingual | 57.8 | 57.9 |
|
79 |
-
| Terminal-bench | 36.7 | 37.7 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
## How to Run Locally
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
```
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
##
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]).
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
library_name: transformers
|
4 |
+
base_model:
|
5 |
+
- deepseek-ai/DeepSeek-V3.2-Exp-Base
|
6 |
+
---
|
7 |
+
# DeepSeek-V3.2-Exp
|
8 |
+
|
9 |
+
<!-- markdownlint-disable first-line-h1 -->
|
10 |
+
<!-- markdownlint-disable html -->
|
11 |
+
<!-- markdownlint-disable no-duplicate-header -->
|
12 |
+
|
13 |
+
<div align="center">
|
14 |
+
<img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V3" />
|
15 |
+
</div>
|
16 |
+
<hr>
|
17 |
+
<div align="center" style="line-height: 1;">
|
18 |
+
<a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;">
|
19 |
+
<img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/>
|
20 |
+
</a>
|
21 |
+
<a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;">
|
22 |
+
<img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20V3-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
23 |
+
</a>
|
24 |
+
<a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;">
|
25 |
+
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
26 |
+
</a>
|
27 |
+
</div>
|
28 |
+
<div align="center" style="line-height: 1;">
|
29 |
+
<a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;">
|
30 |
+
<img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
|
31 |
+
</a>
|
32 |
+
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;">
|
33 |
+
<img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
34 |
+
</a>
|
35 |
+
<a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;">
|
36 |
+
<img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
37 |
+
</a>
|
38 |
+
</div>
|
39 |
+
<div align="center" style="line-height: 1;">
|
40 |
+
<a href="LICENSE" style="margin: 2px;">
|
41 |
+
<img alt="License" src="https://img.shields.io/badge/License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
|
42 |
+
</a>
|
43 |
+
</div>
|
44 |
+
|
45 |
+
## Introduction
|
46 |
+
|
47 |
+
|
48 |
+
We are excited to announce the official release of DeepSeek-V3.2-Exp, an experimental version of our model. As an intermediate step toward our next-generation architecture, V3.2-Exp builds upon V3.1-Terminus by introducing DeepSeek Sparse Attention—a sparse attention mechanism designed to explore and validate optimizations for training and inference efficiency in long-context scenarios.
|
49 |
+
|
50 |
+
This experimental release represents our ongoing research into more efficient transformer architectures, particularly focusing on improving computational efficiency when processing extended text sequences.
|
51 |
+
|
52 |
+
<div align="center">
|
53 |
+
<img src="assets/cost.png" >
|
54 |
+
</div>
|
55 |
+
|
56 |
+
- DeepSeek Sparse Attention (DSA) achieves fine-grained sparse attention for the first time, delivering substantial improvements in long-context training and inference efficiency while maintaining virtually identical model output quality.
|
57 |
+
|
58 |
+
|
59 |
+
- To rigorously evaluate the impact of introducing sparse attention, we deliberately aligned the training configurations of DeepSeek-V3.2-Exp with V3.1-Terminus. Across public benchmarks in various domains, DeepSeek-V3.2-Exp demonstrates performance on par with V3.1-Terminus.
|
60 |
+
|
61 |
+
|
62 |
+
| Benchmark | DeepSeek-V3.1-Terminus | DeepSeek-V3.2-Exp |
|
63 |
+
| :--- | :---: | :---: |
|
64 |
+
| **Reasoning Mode w/o Tool Use** | | |
|
65 |
+
| MMLU-Pro | 85.0 | 85.0 |
|
66 |
+
| GPQA-Diamond | 80.7 | 79.9 |
|
67 |
+
| Humanity's Last Exam | 21.7 | 19.8 |
|
68 |
+
| LiveCodeBench | 74.9 | 74.1 |
|
69 |
+
| AIME 2025 | 88.4 | 89.3 |
|
70 |
+
| HMMT 2025 | 86.1 | 83.6 |
|
71 |
+
| Codeforces | 2046 | 2121 |
|
72 |
+
| Aider-Polyglot | 76.1 | 74.5 |
|
73 |
+
| **Agentic Tool Use** | | |
|
74 |
+
| BrowseComp | 38.5 | 40.1 |
|
75 |
+
| BrowseComp-zh | 45.0 | 47.9 |
|
76 |
+
| SimpleQA | 96.8 | 97.1 |
|
77 |
+
| SWE Verified | 68.4 | 67.8 |
|
78 |
+
| SWE-bench Multilingual | 57.8 | 57.9 |
|
79 |
+
| Terminal-bench | 36.7 | 37.7 |
|
80 |
+
|
81 |
+
|
82 |
+
|
83 |
+
## How to Run Locally
|
84 |
+
|
85 |
+
### HuggingFace
|
86 |
+
|
87 |
+
We provide an updated inference demo code in the [inference](https://huggingface.co/deepseek-ai/DeepSeek-V3.2-Exp/tree/main/inference) folder to help the community quickly get started with our model and understand its architectural details.
|
88 |
+
|
89 |
+
First convert huggingface model weights to the the format required by our inference demo. Set `MP` to match your available GPU count:
|
90 |
+
```bash
|
91 |
+
cd inference
|
92 |
+
export EXPERTS=256
|
93 |
+
python convert.py --hf-ckpt-path ${HF_CKPT_PATH} --save-path ${SAVE_PATH} --n-experts ${EXPERTS} --model-parallel ${MP}
|
94 |
+
```
|
95 |
+
|
96 |
+
Launch the interactive chat interface and start exploring DeepSeek's capabilities:
|
97 |
+
```bash
|
98 |
+
export CONFIG=config_671B_v3.2.json
|
99 |
+
torchrun --nproc-per-node ${MP} generate.py --ckpt-path ${SAVE_PATH} --config ${CONFIG} --interactive
|
100 |
+
```
|
101 |
+
|
102 |
+
### SGLang
|
103 |
+
|
104 |
+
#### Installation with Docker
|
105 |
+
|
106 |
+
```
|
107 |
+
# H200
|
108 |
+
docker pull lmsysorg/sglang:dsv32
|
109 |
+
|
110 |
+
# MI350
|
111 |
+
docker pull lmsysorg/sglang:dsv32-rocm
|
112 |
+
|
113 |
+
# NPUs
|
114 |
+
docker pull lmsysorg/sglang:dsv32-a2
|
115 |
+
docker pull lmsysorg/sglang:dsv32-a3
|
116 |
+
```
|
117 |
+
|
118 |
+
#### Launch Command
|
119 |
+
```bash
|
120 |
+
python -m sglang.launch_server --model deepseek-ai/DeepSeek-V3.2-Exp --tp 8 --dp 8 --page-size 64
|
121 |
+
```
|
122 |
+
|
123 |
+
|
124 |
+
## Open-Source Kernels
|
125 |
+
|
126 |
+
For TileLang kernels with **better readability and research-purpose design**, please refer to [TileLang](https://github.com/tile-ai/tilelang/tree/main/examples/deepseek-v32).
|
127 |
+
|
128 |
+
For **high-performance CUDA kernels**, indexer logit kernels (including paged versions) are available in [DeepGEMM](https://github.com/deepseek-ai/DeepGEMM/pull/200). Sparse attention kernels are released in [FlashMLA](https://github.com/deepseek-ai/FlashMLA/pull/98).
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
## License
|
133 |
+
|
134 |
+
This repository and the model weights are licensed under the [MIT License](LICENSE).
|
135 |
+
|
136 |
+
## Citation
|
137 |
+
|
138 |
+
```
|
139 |
+
@misc{deepseekai2024deepseekv32,
|
140 |
+
title={DeepSeek-V3.2-Exp: Boosting Long-Context Efficiency with DeepSeek Sparse Attention},
|
141 |
+
author={DeepSeek-AI},
|
142 |
+
year={2025},
|
143 |
+
}
|
144 |
+
```
|
145 |
+
|
146 |
+
## Contact
|
147 |
+
|
148 |
If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]).
|