rajistics commited on
Commit
73c8fde
1 Parent(s): 9d328f1

pushing files to the repo from the example!

Browse files
Files changed (5) hide show
  1. README.md +67 -67
  2. config.json +64 -64
  3. confusion_matrix.png +0 -0
  4. model.pkl +1 -1
  5. tree.png +0 -0
README.md CHANGED
@@ -12,96 +12,96 @@ widget:
12
  - material_7
13
  attribute_1:
14
  - material_8
15
- - material_6
16
  - material_8
 
17
  attribute_2:
18
  - 9
 
19
  - 6
20
- - 5
21
  attribute_3:
22
  - 5
23
- - 9
24
- - 8
25
  loading:
26
- - 119.49
27
- - 85.36
28
- - 73.71
29
  measurement_0:
 
30
  - 11
31
- - 10
32
- - 24
33
  measurement_1:
34
- - 2
35
- - 8
36
  - 7
 
 
37
  measurement_10:
38
- - 17.138
39
- - 15.632
40
- - 15.854
41
  measurement_11:
42
- - 19.954
43
- - 18.992
44
- - 20.405
45
  measurement_12:
46
- - 12.348
47
- - .nan
48
- - 13.638
49
  measurement_13:
50
- - 13.93
51
- - 15.148
52
- - .nan
53
  measurement_14:
54
- - 15.889
55
- - .nan
56
- - 15.854
57
  measurement_15:
58
- - 15.831
59
- - 15.849
60
- - 16.555
61
  measurement_16:
62
- - 16.102
63
- - 15.896
64
- - 17.145
65
  measurement_17:
66
- - 643.509
67
- - 722.585
68
- - 802.57
69
  measurement_2:
70
- - 3
71
- - 3
72
- - 7
73
  measurement_3:
74
- - 17.659
75
- - 19.679
76
- - 17.291
77
  measurement_4:
78
- - 11.578
79
- - 11.49
80
- - 11.691
81
  measurement_5:
82
- - 15.514
83
- - 18.267
84
- - 18.289
85
  measurement_6:
86
- - 15.99
87
- - 17.921
88
- - 17.396
89
  measurement_7:
90
- - 12.231
91
- - 11.978
92
- - 11.361
93
  measurement_8:
94
- - 19.92
95
- - 18.135
96
- - 19.67
97
  measurement_9:
98
- - 10.555
99
- - 11.113
100
- - 11.375
101
  product_code:
102
  - A
103
- - E
104
- - C
105
  ---
106
 
107
  # Model description
@@ -220,7 +220,7 @@ The model is trained with below hyperparameters.
220
 
221
  The model plot is below.
222
 
223
- <style>#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 {color: black;background-color: white;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 pre{padding: 0;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-toggleable {background-color: white;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-estimator:hover {background-color: #d4ebff;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-item {z-index: 1;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-parallel-item:only-child::after {width: 0;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14 div.sk-text-repr-fallback {display: none;}</style><div id="sk-b89bd1e9-e872-49aa-bc53-73dc52fc4e14" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;,&#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;,&#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;,&#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;,&#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;,&#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;,&#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;,&#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;,OneHotEncoder(),[&#x27;product_code&#x27;])])),(&#x27;model&#x27;, DecisionTreeClassifier(max_depth=4))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="82f19dd0-da3e-499c-84b9-f67ed489906d" type="checkbox" ><label for="82f19dd0-da3e-499c-84b9-f67ed489906d" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;,&#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;,&#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;,&#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;,&#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;,&#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;,&#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;,&#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;,OneHotEncoder(),[&#x27;product_code&#x27;])])),(&#x27;model&#x27;, DecisionTreeClassifier(max_depth=4))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="e3bc6996-eefc-4601-a7df-7850743b36d6" type="checkbox" ><label for="e3bc6996-eefc-4601-a7df-7850743b36d6" class="sk-toggleable__label sk-toggleable__label-arrow">transformation: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(), [&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;, &#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;, &#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;, &#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;, &#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;, &#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;, &#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;, &#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;, OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;, OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;, OneHotEncoder(),[&#x27;product_code&#x27;])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="9cc3e3ef-17e8-4bf4-a121-0a29a377373e" type="checkbox" ><label for="9cc3e3ef-17e8-4bf4-a121-0a29a377373e" class="sk-toggleable__label sk-toggleable__label-arrow">loading_missing_value_imputer</label><div class="sk-toggleable__content"><pre>[&#x27;loading&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="e7ba5c2d-3bf3-444f-be00-0ecf4b563cd7" type="checkbox" ><label for="e7ba5c2d-3bf3-444f-be00-0ecf4b563cd7" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="2277368d-30f2-46c1-a283-9f0ccf350872" type="checkbox" ><label for="2277368d-30f2-46c1-a283-9f0ccf350872" class="sk-toggleable__label sk-toggleable__label-arrow">numerical_missing_value_imputer</label><div class="sk-toggleable__content"><pre>[&#x27;loading&#x27;, &#x27;measurement_3&#x27;, &#x27;measurement_4&#x27;, &#x27;measurement_5&#x27;, &#x27;measurement_6&#x27;, &#x27;measurement_7&#x27;, &#x27;measurement_8&#x27;, &#x27;measurement_9&#x27;, &#x27;measurement_10&#x27;, &#x27;measurement_11&#x27;, &#x27;measurement_12&#x27;, &#x27;measurement_13&#x27;, &#x27;measurement_14&#x27;, &#x27;measurement_15&#x27;, &#x27;measurement_16&#x27;, &#x27;measurement_17&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="2a49159e-c23f-4cbe-92bb-09bb64c1354d" type="checkbox" ><label for="2a49159e-c23f-4cbe-92bb-09bb64c1354d" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="c87d52bb-0b23-4e43-abe8-afc3759dac02" type="checkbox" ><label for="c87d52bb-0b23-4e43-abe8-afc3759dac02" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_0_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;attribute_0&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="023971df-ed99-4eaf-8f0d-cd115bacbb45" type="checkbox" ><label for="023971df-ed99-4eaf-8f0d-cd115bacbb45" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="111f5303-3f63-409a-9dc1-74ab94419974" type="checkbox" ><label for="111f5303-3f63-409a-9dc1-74ab94419974" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_1_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;attribute_1&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="c858e1b1-b68f-4700-9111-32772a7b51ab" type="checkbox" ><label for="c858e1b1-b68f-4700-9111-32772a7b51ab" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="5ce65801-d4be-48d4-81d3-7998e483cf65" type="checkbox" ><label for="5ce65801-d4be-48d4-81d3-7998e483cf65" class="sk-toggleable__label sk-toggleable__label-arrow">product_code_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;product_code&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="75a1cce7-c7f7-41cf-bb4d-8e403291a41b" type="checkbox" ><label for="75a1cce7-c7f7-41cf-bb4d-8e403291a41b" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="3c311565-4080-492c-b353-fbc41e1c17d5" type="checkbox" ><label for="3c311565-4080-492c-b353-fbc41e1c17d5" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(max_depth=4)</pre></div></div></div></div></div></div></div>
224
 
225
  ## Evaluation Results
226
 
@@ -230,8 +230,8 @@ You can find the details about evaluation process and the evaluation results.
230
 
231
  | Metric | Value |
232
  |----------|----------|
233
- | accuracy | 0.786392 |
234
- | f1 score | 0.786392 |
235
 
236
  # How to Get Started with the Model
237
 
@@ -242,7 +242,7 @@ Use the code below to get started with the model.
242
 
243
  ```python
244
  import pickle
245
- with open(model.pkl, 'rb') as file:
246
  clf = pickle.load(file)
247
  ```
248
 
@@ -273,9 +273,9 @@ Below you can find information related to citation.
273
 
274
 
275
  Tree Plot
276
- ![Tree Plot](tree.png)
277
 
278
 
279
 
280
  Confusion Matrix
281
- ![Confusion Matrix](confusion_matrix.png)
 
12
  - material_7
13
  attribute_1:
14
  - material_8
 
15
  - material_8
16
+ - material_5
17
  attribute_2:
18
  - 9
19
+ - 9
20
  - 6
 
21
  attribute_3:
22
  - 5
23
+ - 5
24
+ - 6
25
  loading:
26
+ - 150.15
27
+ - 106.3
28
+ - 117.52
29
  measurement_0:
30
+ - 6
31
  - 11
32
+ - 4
 
33
  measurement_1:
 
 
34
  - 7
35
+ - 4
36
+ - 9
37
  measurement_10:
38
+ - 15.888
39
+ - 15.56
40
+ - 18.49
41
  measurement_11:
42
+ - 21.623
43
+ - 17.233
44
+ - 20.193
45
  measurement_12:
46
+ - 12.83
47
+ - 12.926
48
+ - 14.127
49
  measurement_13:
50
+ - 14.738
51
+ - 14.367
52
+ - 15.185
53
  measurement_14:
54
+ - 18.506
55
+ - 16.302
56
+ - 16.657
57
  measurement_15:
58
+ - 14.16
59
+ - 15.018
60
+ - 13.326
61
  measurement_16:
62
+ - 15.266
63
+ - 18.297
64
+ - 17.467
65
  measurement_17:
66
+ - 674.165
67
+ - 604.836
68
+ - 648.023
69
  measurement_2:
70
+ - 11
71
+ - 4
72
+ - 9
73
  measurement_3:
74
+ - 19.637
75
+ - 18.217
76
+ - 19.325
77
  measurement_4:
78
+ - 12.55
79
+ - 10.627
80
+ - 10.092
81
  measurement_5:
82
+ - 17.119
83
+ - 17.74
84
+ - 17.218
85
  measurement_6:
86
+ - .nan
87
+ - 17.295
88
+ - 17.962
89
  measurement_7:
90
+ - 10.958
91
+ - 11.732
92
+ - 9.274
93
  measurement_8:
94
+ - 17.93
95
+ - 17.591
96
+ - 18.653
97
  measurement_9:
98
+ - .nan
99
+ - 12.689
100
+ - 13.149
101
  product_code:
102
  - A
103
+ - A
104
+ - D
105
  ---
106
 
107
  # Model description
 
220
 
221
  The model plot is below.
222
 
223
+ <style>#sk-cbcf73f3-3df0-460c-a28c-e975797de98c {color: black;background-color: white;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c pre{padding: 0;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-toggleable {background-color: white;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-estimator:hover {background-color: #d4ebff;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-item {z-index: 1;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-parallel-item:only-child::after {width: 0;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-cbcf73f3-3df0-460c-a28c-e975797de98c div.sk-text-repr-fallback {display: none;}</style><div id="sk-cbcf73f3-3df0-460c-a28c-e975797de98c" class="sk-top-container"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;,&#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;,&#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;,&#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;,&#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;,&#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;,&#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;,&#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;,OneHotEncoder(),[&#x27;product_code&#x27;])])),(&#x27;model&#x27;, DecisionTreeClassifier(max_depth=4))])</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="4039f6df-38bb-4617-ac8b-f6e94de8a91c" type="checkbox" ><label for="4039f6df-38bb-4617-ac8b-f6e94de8a91c" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;transformation&#x27;,ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;,&#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;,&#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;,&#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;,&#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;,&#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;,&#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;,&#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;,OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;,OneHotEncoder(),[&#x27;product_code&#x27;])])),(&#x27;model&#x27;, DecisionTreeClassifier(max_depth=4))])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="61e07386-e7b7-418a-9af8-41b0261577b4" type="checkbox" ><label for="61e07386-e7b7-418a-9af8-41b0261577b4" class="sk-toggleable__label sk-toggleable__label-arrow">transformation: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(transformers=[(&#x27;loading_missing_value_imputer&#x27;,SimpleImputer(), [&#x27;loading&#x27;]),(&#x27;numerical_missing_value_imputer&#x27;,SimpleImputer(),[&#x27;loading&#x27;, &#x27;measurement_3&#x27;, &#x27;measurement_4&#x27;,&#x27;measurement_5&#x27;, &#x27;measurement_6&#x27;,&#x27;measurement_7&#x27;, &#x27;measurement_8&#x27;,&#x27;measurement_9&#x27;, &#x27;measurement_10&#x27;,&#x27;measurement_11&#x27;, &#x27;measurement_12&#x27;,&#x27;measurement_13&#x27;, &#x27;measurement_14&#x27;,&#x27;measurement_15&#x27;, &#x27;measurement_16&#x27;,&#x27;measurement_17&#x27;]),(&#x27;attribute_0_encoder&#x27;, OneHotEncoder(),[&#x27;attribute_0&#x27;]),(&#x27;attribute_1_encoder&#x27;, OneHotEncoder(),[&#x27;attribute_1&#x27;]),(&#x27;product_code_encoder&#x27;, OneHotEncoder(),[&#x27;product_code&#x27;])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="543953aa-7345-4433-b640-9ebcb9cfaed6" type="checkbox" ><label for="543953aa-7345-4433-b640-9ebcb9cfaed6" class="sk-toggleable__label sk-toggleable__label-arrow">loading_missing_value_imputer</label><div class="sk-toggleable__content"><pre>[&#x27;loading&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="28f1b85a-54e9-44db-b914-819af4998fd1" type="checkbox" ><label for="28f1b85a-54e9-44db-b914-819af4998fd1" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="d8710d93-e747-4796-95d5-77538856cb1d" type="checkbox" ><label for="d8710d93-e747-4796-95d5-77538856cb1d" class="sk-toggleable__label sk-toggleable__label-arrow">numerical_missing_value_imputer</label><div class="sk-toggleable__content"><pre>[&#x27;loading&#x27;, &#x27;measurement_3&#x27;, &#x27;measurement_4&#x27;, &#x27;measurement_5&#x27;, &#x27;measurement_6&#x27;, &#x27;measurement_7&#x27;, &#x27;measurement_8&#x27;, &#x27;measurement_9&#x27;, &#x27;measurement_10&#x27;, &#x27;measurement_11&#x27;, &#x27;measurement_12&#x27;, &#x27;measurement_13&#x27;, &#x27;measurement_14&#x27;, &#x27;measurement_15&#x27;, &#x27;measurement_16&#x27;, &#x27;measurement_17&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="b23ea887-b3eb-4dbc-ba26-dd3e0e018c70" type="checkbox" ><label for="b23ea887-b3eb-4dbc-ba26-dd3e0e018c70" class="sk-toggleable__label sk-toggleable__label-arrow">SimpleImputer</label><div class="sk-toggleable__content"><pre>SimpleImputer()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="c87a37af-e576-4840-bf8c-7e7f5b8ab39e" type="checkbox" ><label for="c87a37af-e576-4840-bf8c-7e7f5b8ab39e" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_0_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;attribute_0&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="580ea11e-4df6-4bce-b994-dc4d342d42d4" type="checkbox" ><label for="580ea11e-4df6-4bce-b994-dc4d342d42d4" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="8ccfa95c-d0f7-4dd2-8be2-0885a564d231" type="checkbox" ><label for="8ccfa95c-d0f7-4dd2-8be2-0885a564d231" class="sk-toggleable__label sk-toggleable__label-arrow">attribute_1_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;attribute_1&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="e1ed00d2-3cb6-43cd-9ba5-bc0518c93345" type="checkbox" ><label for="e1ed00d2-3cb6-43cd-9ba5-bc0518c93345" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="b94ddf76-0075-4efc-9cc4-8c6b69fefad5" type="checkbox" ><label for="b94ddf76-0075-4efc-9cc4-8c6b69fefad5" class="sk-toggleable__label sk-toggleable__label-arrow">product_code_encoder</label><div class="sk-toggleable__content"><pre>[&#x27;product_code&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="1d06bc4d-04b9-44d6-a23f-cdc26d70b7e2" type="checkbox" ><label for="1d06bc4d-04b9-44d6-a23f-cdc26d70b7e2" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder()</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="208c2a51-a582-469b-9bd1-23b9a3968840" type="checkbox" ><label for="208c2a51-a582-469b-9bd1-23b9a3968840" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeClassifier</label><div class="sk-toggleable__content"><pre>DecisionTreeClassifier(max_depth=4)</pre></div></div></div></div></div></div></div>
224
 
225
  ## Evaluation Results
226
 
 
230
 
231
  | Metric | Value |
232
  |----------|----------|
233
+ | accuracy | 0.778564 |
234
+ | f1 score | 0.778564 |
235
 
236
  # How to Get Started with the Model
237
 
 
242
 
243
  ```python
244
  import pickle
245
+ with open(decision-tree-playground-kaggle/model.pkl, 'rb') as file:
246
  clf = pickle.load(file)
247
  ```
248
 
 
273
 
274
 
275
  Tree Plot
276
+ ![Tree Plot](decision-tree-playground-kaggle/tree.png)
277
 
278
 
279
 
280
  Confusion Matrix
281
+ ![Confusion Matrix](decision-tree-playground-kaggle/confusion_matrix.png)
config.json CHANGED
@@ -37,118 +37,118 @@
37
  ],
38
  "attribute_1": [
39
  "material_8",
40
- "material_6",
41
- "material_8"
42
  ],
43
  "attribute_2": [
44
  9,
45
- 6,
46
- 5
47
  ],
48
  "attribute_3": [
49
  5,
50
- 9,
51
- 8
52
  ],
53
  "loading": [
54
- 119.49,
55
- 85.36,
56
- 73.71
57
  ],
58
  "measurement_0": [
 
59
  11,
60
- 10,
61
- 24
62
  ],
63
  "measurement_1": [
64
- 2,
65
- 8,
66
- 7
67
  ],
68
  "measurement_10": [
69
- 17.138,
70
- 15.632,
71
- 15.854
72
  ],
73
  "measurement_11": [
74
- 19.954,
75
- 18.992,
76
- 20.405
77
  ],
78
  "measurement_12": [
79
- 12.348,
80
- NaN,
81
- 13.638
82
  ],
83
  "measurement_13": [
84
- 13.93,
85
- 15.148,
86
- NaN
87
  ],
88
  "measurement_14": [
89
- 15.889,
90
- NaN,
91
- 15.854
92
  ],
93
  "measurement_15": [
94
- 15.831,
95
- 15.849,
96
- 16.555
97
  ],
98
  "measurement_16": [
99
- 16.102,
100
- 15.896,
101
- 17.145
102
  ],
103
  "measurement_17": [
104
- 643.509,
105
- 722.585,
106
- 802.57
107
  ],
108
  "measurement_2": [
109
- 3,
110
- 3,
111
- 7
112
  ],
113
  "measurement_3": [
114
- 17.659,
115
- 19.679,
116
- 17.291
117
  ],
118
  "measurement_4": [
119
- 11.578,
120
- 11.49,
121
- 11.691
122
  ],
123
  "measurement_5": [
124
- 15.514,
125
- 18.267,
126
- 18.289
127
  ],
128
  "measurement_6": [
129
- 15.99,
130
- 17.921,
131
- 17.396
132
  ],
133
  "measurement_7": [
134
- 12.231,
135
- 11.978,
136
- 11.361
137
  ],
138
  "measurement_8": [
139
- 19.92,
140
- 18.135,
141
- 19.67
142
  ],
143
  "measurement_9": [
144
- 10.555,
145
- 11.113,
146
- 11.375
147
  ],
148
  "product_code": [
149
  "A",
150
- "E",
151
- "C"
152
  ]
153
  },
154
  "model": {
 
37
  ],
38
  "attribute_1": [
39
  "material_8",
40
+ "material_8",
41
+ "material_5"
42
  ],
43
  "attribute_2": [
44
  9,
45
+ 9,
46
+ 6
47
  ],
48
  "attribute_3": [
49
  5,
50
+ 5,
51
+ 6
52
  ],
53
  "loading": [
54
+ 150.15,
55
+ 106.3,
56
+ 117.52
57
  ],
58
  "measurement_0": [
59
+ 6,
60
  11,
61
+ 4
 
62
  ],
63
  "measurement_1": [
64
+ 7,
65
+ 4,
66
+ 9
67
  ],
68
  "measurement_10": [
69
+ 15.888,
70
+ 15.56,
71
+ 18.49
72
  ],
73
  "measurement_11": [
74
+ 21.623,
75
+ 17.233,
76
+ 20.193
77
  ],
78
  "measurement_12": [
79
+ 12.83,
80
+ 12.926,
81
+ 14.127
82
  ],
83
  "measurement_13": [
84
+ 14.738,
85
+ 14.367,
86
+ 15.185
87
  ],
88
  "measurement_14": [
89
+ 18.506,
90
+ 16.302,
91
+ 16.657
92
  ],
93
  "measurement_15": [
94
+ 14.16,
95
+ 15.018,
96
+ 13.326
97
  ],
98
  "measurement_16": [
99
+ 15.266,
100
+ 18.297,
101
+ 17.467
102
  ],
103
  "measurement_17": [
104
+ 674.165,
105
+ 604.836,
106
+ 648.023
107
  ],
108
  "measurement_2": [
109
+ 11,
110
+ 4,
111
+ 9
112
  ],
113
  "measurement_3": [
114
+ 19.637,
115
+ 18.217,
116
+ 19.325
117
  ],
118
  "measurement_4": [
119
+ 12.55,
120
+ 10.627,
121
+ 10.092
122
  ],
123
  "measurement_5": [
124
+ 17.119,
125
+ 17.74,
126
+ 17.218
127
  ],
128
  "measurement_6": [
129
+ NaN,
130
+ 17.295,
131
+ 17.962
132
  ],
133
  "measurement_7": [
134
+ 10.958,
135
+ 11.732,
136
+ 9.274
137
  ],
138
  "measurement_8": [
139
+ 17.93,
140
+ 17.591,
141
+ 18.653
142
  ],
143
  "measurement_9": [
144
+ NaN,
145
+ 12.689,
146
+ 13.149
147
  ],
148
  "product_code": [
149
  "A",
150
+ "A",
151
+ "D"
152
  ]
153
  },
154
  "model": {
confusion_matrix.png CHANGED
model.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0b657336bbde87de9beb4cffee3e500e48379fca8417bcdf538ceea6e6d59bb9
3
  size 6824
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f40e9887075f5b2d676c4403570f5209241753a50303b4bfadeb32203376755a
3
  size 6824
tree.png CHANGED