| # coding=utf-8 | |
| # Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # """ GPTNeoX model configuration""" | |
| # from ...configuration_utils import PretrainedConfig | |
| # from ...utils import logging | |
| # logger = logging.get_logger(__name__) | |
| # GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP = { | |
| # "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", | |
| # # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox | |
| # } | |
| # class GPTNeoXConfig(PretrainedConfig): | |
| # r""" | |
| # This is the configuration class to store the configuration of a [`GPTNeoXModel`]. It is used to instantiate an | |
| # GPTNeoX model according to the specified arguments, defining the model architecture. Instantiating a configuration | |
| # with the defaults will yield a similar configuration to that of the GPTNeoX | |
| # [EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) architecture. | |
| # Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the | |
| # documentation from [`PretrainedConfig`] for more information. | |
| # Args: | |
| # vocab_size (`int`, *optional*, defaults to 50432): | |
| # Vocabulary size of the GPTNeoX model. Defines the number of different tokens that can be represented by the | |
| # `inputs_ids` passed when calling [`GPTNeoXModel`]. | |
| # hidden_size (`int`, *optional*, defaults to 6144): | |
| # Dimension of the encoder layers and the pooler layer. | |
| # num_hidden_layers (`int`, *optional*, defaults to 44): | |
| # Number of hidden layers in the Transformer encoder. | |
| # num_attention_heads (`int`, *optional*, defaults to 64): | |
| # Number of attention heads for each attention layer in the Transformer encoder. | |
| # intermediate_size (`int`, *optional*, defaults to 24576): | |
| # Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. | |
| # hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`): | |
| # The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, | |
| # `"relu"`, `"selu"` and `"gelu_new"` are supported. | |
| # rotary_pct (`float`, *optional*, defaults to 0.25): | |
| # percentage of hidden dimensions to allocate to rotary embeddings | |
| # rotary_emb_base (`int`, *optional*, defaults to 10000) | |
| # base for computing rotary embeddings frequency | |
| # attention_dropout (`float`, *optional*, defaults to 0.0): | |
| # The dropout ratio probability of the attention score. | |
| # hidden_dropout (`float`, *optional*, defaults to 0.0): | |
| # The dropout ratio of (1) the word embeddings, (2) the post-attention hidden states, and (3) the post-mlp | |
| # hidden states. | |
| # classifier_dropout (`float`, *optional*, defaults to 0.1): | |
| # Argument used when doing token classification, used in the model [`GPTNeoXForTokenClassification`]. | |
| # The dropout ratio for the hidden layer. | |
| # max_position_embeddings (`int`, *optional*, defaults to 2048): | |
| # The maximum sequence length that this model might ever be used with. Typically set this to something large | |
| # just in case (e.g., 512 or 1024 or 2048). | |
| # initializer_range (`float`, *optional*, defaults to 1e-5): | |
| # The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | |
| # layer_norm_eps (`float`, *optional*, defaults to 1e-12): | |
| # The epsilon used by the layer normalization layers. | |
| # use_cache (`bool`, *optional*, defaults to `True`): | |
| # Whether or not the model should return the last key/values attentions (not used by all models). Only | |
| # relevant if `config.is_decoder=True`. | |
| # use_parallel_residual (`bool`, *optional*, defaults to `True`): | |
| # Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training | |
| # speedup at large scales (e.g. 20B). | |
| # rope_scaling (`Dict`, *optional*): | |
| # Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling | |
| # strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format | |
| # is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update | |
| # `max_position_embeddings` to the expected new maximum. See the following thread for more information on how | |
| # these scaling strategies behave: | |
| # https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an | |
| # experimental feature, subject to breaking API changes in future versions. | |
| # Example: | |
| # ```python | |
| # >>> from transformers import GPTNeoXConfig, GPTNeoXModel | |
| # >>> # Initializing a GPTNeoX gpt-neox-20b style configuration | |
| # >>> configuration = GPTNeoXConfig() | |
| # >>> # Initializing a model (with random weights) from the gpt-neox-20b style configuration | |
| # >>> model = GPTNeoXModel(configuration) # doctest: +SKIP | |
| # >>> # Accessing the model configuration | |
| # >>> configuration = model.config # doctest: +SKIP | |
| # ```""" | |
| # model_type = "gpt_neox" | |
| from transformers import PretrainedConfig | |
| class CustomConfig4(PretrainedConfig): | |
| model_type = "custom4" | |
| def __init__( | |
| self, | |
| vocab_size=50432, | |
| hidden_size=6144, | |
| num_hidden_layers=44, | |
| num_attention_heads=64, | |
| intermediate_size=24576, | |
| hidden_act="gelu", | |
| rotary_pct=0.25, | |
| rotary_emb_base=10000, | |
| attention_dropout=0.0, | |
| hidden_dropout=0.0, | |
| classifier_dropout=0.1, | |
| max_position_embeddings=2048, | |
| initializer_range=0.02, | |
| layer_norm_eps=1e-5, | |
| use_cache=True, | |
| bos_token_id=0, | |
| eos_token_id=2, | |
| tie_word_embeddings=False, | |
| use_parallel_residual=True, | |
| rope_scaling=None, | |
| **kwargs, | |
| ): | |
| super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) | |
| self.vocab_size = vocab_size | |
| self.max_position_embeddings = max_position_embeddings | |
| self.hidden_size = hidden_size | |
| self.num_hidden_layers = num_hidden_layers | |
| self.num_attention_heads = num_attention_heads | |
| self.intermediate_size = intermediate_size | |
| self.hidden_act = hidden_act | |
| self.rotary_pct = rotary_pct | |
| self.rotary_emb_base = rotary_emb_base | |
| self.attention_dropout = attention_dropout | |
| self.hidden_dropout = hidden_dropout | |
| self.classifier_dropout = classifier_dropout | |
| self.initializer_range = initializer_range | |
| self.layer_norm_eps = layer_norm_eps | |
| self.use_cache = use_cache | |
| self.tie_word_embeddings = tie_word_embeddings | |
| self.use_parallel_residual = use_parallel_residual | |
| self.rope_scaling = rope_scaling | |
| self._rope_scaling_validation() | |
| if self.hidden_size % self.num_attention_heads != 0: | |
| raise ValueError( | |
| "The hidden size is not divisble by the number of attention heads! Make sure to update them!" | |
| ) | |
| # Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation | |
| def _rope_scaling_validation(self): | |
| """ | |
| Validate the `rope_scaling` configuration. | |
| """ | |
| if self.rope_scaling is None: | |
| return | |
| if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2: | |
| raise ValueError( | |
| "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, " | |
| f"got {self.rope_scaling}" | |
| ) | |
| rope_scaling_type = self.rope_scaling.get("type", None) | |
| rope_scaling_factor = self.rope_scaling.get("factor", None) | |
| if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: | |
| raise ValueError( | |
| f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" | |
| ) | |
| if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0: | |
| raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}") | |