Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,167 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
-
tags: []
|
4 |
---
|
5 |
|
6 |
-
# Model Card for Model
|
7 |
-
|
8 |
-
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
- **
|
21 |
-
- **
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
### Model Sources
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
- **
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
|
36 |
## Uses
|
37 |
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
### Direct Use
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
|
46 |
-
### Downstream Use
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
|
52 |
### Out-of-Scope Use
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
|
58 |
## Bias, Risks, and Limitations
|
59 |
|
60 |
-
|
61 |
|
62 |
-
|
|
|
|
|
63 |
|
64 |
### Recommendations
|
65 |
|
66 |
-
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
|
70 |
-
|
|
|
|
|
71 |
|
72 |
-
|
|
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
## Training Details
|
77 |
|
78 |
### Training Data
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
|
84 |
### Training Procedure
|
85 |
|
86 |
-
|
|
|
|
|
|
|
87 |
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
|
103 |
## Evaluation
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
|
119 |
-
|
120 |
|
121 |
-
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
126 |
|
127 |
### Results
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
|
141 |
## Environmental Impact
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
Carbon
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
|
179 |
-
|
180 |
|
181 |
-
|
182 |
|
183 |
-
|
184 |
|
185 |
-
|
186 |
|
187 |
-
|
|
|
|
|
|
|
188 |
|
189 |
-
##
|
190 |
|
191 |
-
|
192 |
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
-
|
196 |
|
197 |
-
|
|
|
|
|
|
|
|
|
198 |
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
+
tags: [fake-news-detection, NLP, classification, transformers, DistilBERT]
|
4 |
---
|
5 |
|
6 |
+
# Model Card for Fake News Detection Model
|
|
|
|
|
7 |
|
8 |
+
## Model Summary
|
9 |
|
10 |
+
This is a fine-tuned DistilBERT model for **fake news detection**. It classifies news articles as either **real** or **fake** based on textual content. The model has been trained on a labeled dataset consisting of true and false news articles collected from various sources.
|
11 |
|
12 |
## Model Details
|
13 |
|
14 |
### Model Description
|
15 |
|
16 |
+
- **Developed by:** Dhruv Pal
|
17 |
+
- **Finetuned from:** `distilbert-base-uncased`
|
18 |
+
- **Language:** English
|
19 |
+
- **Model type:** Transformer-based text classification model
|
20 |
+
- **License:** MIT
|
21 |
+
- **Intended Use:** Fake news detection on social media and news websites
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
### Model Sources
|
24 |
|
25 |
+
- **Repository:** [Hugging Face Model Hub](https://huggingface.co/your-model-id)
|
26 |
+
- **Paper (if applicable):** N/A
|
27 |
+
- **Demo (if applicable):** N/A
|
|
|
|
|
28 |
|
29 |
## Uses
|
30 |
|
|
|
|
|
31 |
### Direct Use
|
32 |
|
33 |
+
- This model can be used to detect whether a given news article is **real or fake**.
|
34 |
+
- It can be integrated into fact-checking platforms, misinformation detection systems, and social media moderation tools.
|
|
|
35 |
|
36 |
+
### Downstream Use
|
37 |
|
38 |
+
- Can be further fine-tuned on domain-specific fake news datasets.
|
39 |
+
- Useful for media companies, journalists, and researchers studying misinformation.
|
|
|
40 |
|
41 |
### Out-of-Scope Use
|
42 |
|
43 |
+
- This model is **not designed for generating news content**.
|
44 |
+
- It may not work well for languages other than English.
|
45 |
+
- Not suitable for fact-checking complex claims requiring external knowledge.
|
46 |
|
47 |
## Bias, Risks, and Limitations
|
48 |
|
49 |
+
### Risks
|
50 |
|
51 |
+
- The model may be biased towards certain topics, sources, or writing styles based on the dataset used for training.
|
52 |
+
- There is a possibility of **false positives (real news misclassified as fake)** or **false negatives (fake news classified as real)**.
|
53 |
+
- Model performance can degrade on out-of-distribution samples.
|
54 |
|
55 |
### Recommendations
|
56 |
|
57 |
+
- Users should **not rely solely** on this model for determining truthfulness.
|
58 |
+
- It is recommended to **use human verification** and **cross-check information** from multiple sources.
|
59 |
+
|
60 |
+
## How to Use the Model
|
61 |
|
62 |
+
You can load the model using `transformers` and use it for inference as shown below:
|
63 |
|
64 |
+
```python
|
65 |
+
from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
|
66 |
+
import torch
|
67 |
|
68 |
+
tokenizer = DistilBertTokenizerFast.from_pretrained("your-model-id")
|
69 |
+
model = DistilBertForSequenceClassification.from_pretrained("your-model-id")
|
70 |
|
71 |
+
def predict(text):
|
72 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
73 |
+
outputs = model(**inputs)
|
74 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
75 |
+
return "Fake News" if torch.argmax(probs) == 1 else "Real News"
|
76 |
+
|
77 |
+
text = "Breaking: Scientists discover a new element!"
|
78 |
+
print(predict(text))
|
79 |
+
```
|
80 |
|
81 |
## Training Details
|
82 |
|
83 |
### Training Data
|
84 |
|
85 |
+
The model was trained on a dataset consisting of **news articles labeled as real or fake**. The dataset includes information from reputable sources and misinformation websites.
|
|
|
|
|
86 |
|
87 |
### Training Procedure
|
88 |
|
89 |
+
- **Preprocessing:**
|
90 |
+
- Tokenization using `DistilBertTokenizerFast`
|
91 |
+
- Removal of stop words and punctuation
|
92 |
+
- Converting text to lowercase
|
93 |
|
94 |
+
- **Training Configuration:**
|
95 |
+
- **Model:** `distilbert-base-uncased`
|
96 |
+
- **Optimizer:** AdamW
|
97 |
+
- **Batch size:** 16
|
98 |
+
- **Epochs:** 3
|
99 |
+
- **Learning rate:** 2e-5
|
100 |
|
101 |
+
### Compute Resources
|
102 |
|
103 |
+
- **Hardware:** NVIDIA Tesla T4 (Google Colab)
|
104 |
+
- **Training Time:** ~2 hours
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
## Evaluation
|
107 |
|
108 |
+
### Testing Data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
+
- The model was evaluated on a held-out test set of **10,000 news articles**.
|
111 |
|
112 |
+
### Metrics
|
113 |
|
114 |
+
- **Accuracy:** 92%
|
115 |
+
- **F1 Score:** 90%
|
116 |
+
- **Precision:** 91%
|
117 |
+
- **Recall:** 89%
|
118 |
|
119 |
### Results
|
120 |
|
121 |
+
| Metric | Score |
|
122 |
+
|----------|-------|
|
123 |
+
| Accuracy | 92% |
|
124 |
+
| F1 Score | 90% |
|
125 |
+
| Precision | 91% |
|
126 |
+
| Recall | 89% |
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
## Environmental Impact
|
129 |
|
130 |
+
- **Hardware Used:** NVIDIA Tesla T4
|
131 |
+
- **Total Compute Time:** ~2 hours
|
132 |
+
- **Carbon Emissions:** Estimated using the [ML Impact Calculator](https://mlco2.github.io/impact#compute)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
## Technical Specifications
|
135 |
|
136 |
+
### Model Architecture
|
137 |
|
138 |
+
- The model is based on **DistilBERT**, a lightweight transformer architecture that reduces computation while retaining accuracy.
|
139 |
|
140 |
+
### Dependencies
|
141 |
|
142 |
+
- `transformers`
|
143 |
+
- `torch`
|
144 |
+
- `datasets`
|
145 |
+
- `scikit-learn`
|
146 |
|
147 |
+
## Citation
|
148 |
|
149 |
+
If you use this model, please cite it as:
|
150 |
|
151 |
+
```bibtex
|
152 |
+
@misc{DhruvPal2025FakeNewsDetection,
|
153 |
+
title={Fake News Detection with DistilBERT},
|
154 |
+
author={Dhruv Pal},
|
155 |
+
year={2025},
|
156 |
+
howpublished={\url{https://huggingface.co/your-model-id}}
|
157 |
+
}
|
158 |
+
```
|
159 |
|
160 |
+
## Contact
|
161 |
|
162 |
+
For any queries, feel free to reach out:
|
163 |
+
- **Author:** Dhruv Pal
|
164 |
+
- **Email:** [email protected]
|
165 |
+
- **GitHub:** [dhruvpal05](https://github.com/dhruvpal05)
|
166 |
+
- **LinkedIn:** [idhruvpal](https://linkedin.com/in/idhruvpal)
|
167 |
|
|