dhruvpal commited on
Commit
7b22092
·
verified ·
1 Parent(s): 68645fb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -131
README.md CHANGED
@@ -1,199 +1,167 @@
1
  ---
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
 
62
- [More Information Needed]
 
 
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
 
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
 
 
71
 
72
- Use the code below to get started with the model.
 
73
 
74
- [More Information Needed]
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
 
87
 
88
- #### Preprocessing [optional]
 
 
 
 
 
89
 
90
- [More Information Needed]
91
 
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
 
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
 
 
 
 
 
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
 
 
 
 
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags: [fake-news-detection, NLP, classification, transformers, DistilBERT]
4
  ---
5
 
6
+ # Model Card for Fake News Detection Model
 
 
7
 
8
+ ## Model Summary
9
 
10
+ This is a fine-tuned DistilBERT model for **fake news detection**. It classifies news articles as either **real** or **fake** based on textual content. The model has been trained on a labeled dataset consisting of true and false news articles collected from various sources.
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
+ - **Developed by:** Dhruv Pal
17
+ - **Finetuned from:** `distilbert-base-uncased`
18
+ - **Language:** English
19
+ - **Model type:** Transformer-based text classification model
20
+ - **License:** MIT
21
+ - **Intended Use:** Fake news detection on social media and news websites
 
 
 
 
 
22
 
23
+ ### Model Sources
24
 
25
+ - **Repository:** [Hugging Face Model Hub](https://huggingface.co/your-model-id)
26
+ - **Paper (if applicable):** N/A
27
+ - **Demo (if applicable):** N/A
 
 
28
 
29
  ## Uses
30
 
 
 
31
  ### Direct Use
32
 
33
+ - This model can be used to detect whether a given news article is **real or fake**.
34
+ - It can be integrated into fact-checking platforms, misinformation detection systems, and social media moderation tools.
 
35
 
36
+ ### Downstream Use
37
 
38
+ - Can be further fine-tuned on domain-specific fake news datasets.
39
+ - Useful for media companies, journalists, and researchers studying misinformation.
 
40
 
41
  ### Out-of-Scope Use
42
 
43
+ - This model is **not designed for generating news content**.
44
+ - It may not work well for languages other than English.
45
+ - Not suitable for fact-checking complex claims requiring external knowledge.
46
 
47
  ## Bias, Risks, and Limitations
48
 
49
+ ### Risks
50
 
51
+ - The model may be biased towards certain topics, sources, or writing styles based on the dataset used for training.
52
+ - There is a possibility of **false positives (real news misclassified as fake)** or **false negatives (fake news classified as real)**.
53
+ - Model performance can degrade on out-of-distribution samples.
54
 
55
  ### Recommendations
56
 
57
+ - Users should **not rely solely** on this model for determining truthfulness.
58
+ - It is recommended to **use human verification** and **cross-check information** from multiple sources.
59
+
60
+ ## How to Use the Model
61
 
62
+ You can load the model using `transformers` and use it for inference as shown below:
63
 
64
+ ```python
65
+ from transformers import DistilBertTokenizerFast, DistilBertForSequenceClassification
66
+ import torch
67
 
68
+ tokenizer = DistilBertTokenizerFast.from_pretrained("your-model-id")
69
+ model = DistilBertForSequenceClassification.from_pretrained("your-model-id")
70
 
71
+ def predict(text):
72
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
73
+ outputs = model(**inputs)
74
+ probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
75
+ return "Fake News" if torch.argmax(probs) == 1 else "Real News"
76
+
77
+ text = "Breaking: Scientists discover a new element!"
78
+ print(predict(text))
79
+ ```
80
 
81
  ## Training Details
82
 
83
  ### Training Data
84
 
85
+ The model was trained on a dataset consisting of **news articles labeled as real or fake**. The dataset includes information from reputable sources and misinformation websites.
 
 
86
 
87
  ### Training Procedure
88
 
89
+ - **Preprocessing:**
90
+ - Tokenization using `DistilBertTokenizerFast`
91
+ - Removal of stop words and punctuation
92
+ - Converting text to lowercase
93
 
94
+ - **Training Configuration:**
95
+ - **Model:** `distilbert-base-uncased`
96
+ - **Optimizer:** AdamW
97
+ - **Batch size:** 16
98
+ - **Epochs:** 3
99
+ - **Learning rate:** 2e-5
100
 
101
+ ### Compute Resources
102
 
103
+ - **Hardware:** NVIDIA Tesla T4 (Google Colab)
104
+ - **Training Time:** ~2 hours
 
 
 
 
 
 
 
 
105
 
106
  ## Evaluation
107
 
108
+ ### Testing Data
 
 
 
 
 
 
 
 
 
 
 
 
109
 
110
+ - The model was evaluated on a held-out test set of **10,000 news articles**.
111
 
112
+ ### Metrics
113
 
114
+ - **Accuracy:** 92%
115
+ - **F1 Score:** 90%
116
+ - **Precision:** 91%
117
+ - **Recall:** 89%
118
 
119
  ### Results
120
 
121
+ | Metric | Score |
122
+ |----------|-------|
123
+ | Accuracy | 92% |
124
+ | F1 Score | 90% |
125
+ | Precision | 91% |
126
+ | Recall | 89% |
 
 
 
 
 
127
 
128
  ## Environmental Impact
129
 
130
+ - **Hardware Used:** NVIDIA Tesla T4
131
+ - **Total Compute Time:** ~2 hours
132
+ - **Carbon Emissions:** Estimated using the [ML Impact Calculator](https://mlco2.github.io/impact#compute)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133
 
134
+ ## Technical Specifications
135
 
136
+ ### Model Architecture
137
 
138
+ - The model is based on **DistilBERT**, a lightweight transformer architecture that reduces computation while retaining accuracy.
139
 
140
+ ### Dependencies
141
 
142
+ - `transformers`
143
+ - `torch`
144
+ - `datasets`
145
+ - `scikit-learn`
146
 
147
+ ## Citation
148
 
149
+ If you use this model, please cite it as:
150
 
151
+ ```bibtex
152
+ @misc{DhruvPal2025FakeNewsDetection,
153
+ title={Fake News Detection with DistilBERT},
154
+ author={Dhruv Pal},
155
+ year={2025},
156
+ howpublished={\url{https://huggingface.co/your-model-id}}
157
+ }
158
+ ```
159
 
160
+ ## Contact
161
 
162
+ For any queries, feel free to reach out:
163
+ - **Author:** Dhruv Pal
164
+ - **Email:** [email protected]
165
+ - **GitHub:** [dhruvpal05](https://github.com/dhruvpal05)
166
+ - **LinkedIn:** [idhruvpal](https://linkedin.com/in/idhruvpal)
167