--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-7B-Instruct-1M tags: - sanskrit - translation - qwen - axolotl datasets: - diabolic6045/Sanskrit-llama model-index: - name: Sanskrit-qwen-7B-Translate results: [] --- # Sanskrit-qwen-7B-Translate This model is a fine-tuned version of [Qwen/Qwen2.5-7B-Instruct-1M](https://huggingface.co/Qwen/Qwen2.5-7B-Instruct-1M) optimized for Sanskrit language tasks. ## Model Description This is a merged version of a fine-tuned Qwen 2.5 7B model, specifically trained for Sanskrit language understanding and translation tasks. The model has been trained on a custom Sanskrit dataset to enhance its capabilities in handling Sanskrit text. ## Intended Uses & Limitations ### Intended Uses - Sanskrit text understanding and generation - Sanskrit-English translation tasks - Sanskrit language processing ### Limitations - Performance may vary based on the complexity of Sanskrit text - Model should be used within ethical and legal guidelines ## Training Data The model was trained on the [diabolic6045/Sanskrit-llama](https://huggingface.co/datasets/diabolic6045/Sanskrit-llama) dataset. ## Training Procedure ### Training Details - Base Model: Qwen/Qwen2.5-7B-Instruct-1M - Training Type: Fine-tuning - Hardware: Multi-GPU setup - Training Parameters: - Learning Rate: 2e-05 - Epochs: 1 - Batch Size: 2 (total) - Optimizer: AdamW - LR Scheduler: Cosine with warmup ## Framework Versions - Transformers 4.49.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0 [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.0.dev0` ```yaml base_model: Qwen/Qwen2.5-7B-Instruct-1M load_in_8bit: false load_in_4bit: true strict: false datasets: - path: diabolic6045/Sanskrit-llama type: alpaca dataset_prepared_path: val_set_size: 0 output_dir: ./outputs/qlora-out adapter: qlora lora_model_dir: sequence_len: 1024 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: hub_model_id: Sanskrit-qwen-8B wandb_project: संस्कृतम्-llama wandb_entity: wandb_watch: all wandb_name: संस्कृतम्-llama wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 1 num_epochs: 1 optimizer: paged_adamw_8bit lr_scheduler: cosine cosine_min_lr_ratio: 0.2 learning_rate: 2e-5 train_on_inputs: false group_by_length: false bf16: false fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: false #gpu_memory_limit: 20GiB #lora_on_cpu: true warmup_steps: 10 evals_per_epoch: 4 saves_per_epoch: 1 debug: deepspeed: deepspeed_configs/zero1.json weight_decay: 0.0 special_tokens: pad_token: <|end_of_text|> ```

## License This model is released under the Apache 2.0 license.