--- base_model: cardiffnlp/twitter-roberta-base-irony tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: twitter-roberta-base_3epoch5.64 results: [] --- # twitter-roberta-base_3epoch5.64 This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-irony](https://huggingface.co/cardiffnlp/twitter-roberta-base-irony) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2330 - Accuracy: 0.7478 - F1: 0.4147 - Precision: 0.62 - Recall: 0.3116 - Precision Sarcastic: 0.62 - Recall Sarcastic: 0.3116 - F1 Sarcastic: 0.4147 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Precision Sarcastic | Recall Sarcastic | F1 Sarcastic | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------------:|:----------------:|:------------:| | No log | 1.0 | 44 | 2.1672 | 0.7262 | 0.5103 | 0.5238 | 0.4975 | 0.5238 | 0.4975 | 0.5103 | | No log | 2.0 | 88 | 2.2472 | 0.7522 | 0.4150 | 0.6421 | 0.3065 | 0.6421 | 0.3065 | 0.4150 | | No log | 3.0 | 132 | 2.2529 | 0.7464 | 0.4359 | 0.6018 | 0.3417 | 0.6018 | 0.3417 | 0.4359 | | No log | 4.0 | 176 | 2.2045 | 0.7522 | 0.4522 | 0.6174 | 0.3568 | 0.6174 | 0.3568 | 0.4522 | | No log | 5.0 | 220 | 2.2330 | 0.7478 | 0.4147 | 0.62 | 0.3116 | 0.62 | 0.3116 | 0.4147 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1