End of training
Browse files- README.md +69 -0
- model.safetensors +1 -1
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,69 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            license: mit
         | 
| 3 | 
            +
            base_model: pyannote/segmentation-3.0
         | 
| 4 | 
            +
            tags:
         | 
| 5 | 
            +
            - speaker-diarization
         | 
| 6 | 
            +
            - speaker-segmentation
         | 
| 7 | 
            +
            - generated_from_trainer
         | 
| 8 | 
            +
            datasets:
         | 
| 9 | 
            +
            - diarizers-community/callhome
         | 
| 10 | 
            +
            model-index:
         | 
| 11 | 
            +
            - name: speaker-segmentation-fine-tuned-callhome-spa
         | 
| 12 | 
            +
              results: []
         | 
| 13 | 
            +
            ---
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            <!-- This model card has been generated automatically according to the information the Trainer had access to. You
         | 
| 16 | 
            +
            should probably proofread and complete it, then remove this comment. -->
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            # speaker-segmentation-fine-tuned-callhome-spa
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/callhome spa dataset.
         | 
| 21 | 
            +
            It achieves the following results on the evaluation set:
         | 
| 22 | 
            +
            - Loss: 0.5198
         | 
| 23 | 
            +
            - Der: 0.1745
         | 
| 24 | 
            +
            - False Alarm: 0.0739
         | 
| 25 | 
            +
            - Missed Detection: 0.0687
         | 
| 26 | 
            +
            - Confusion: 0.0319
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            ## Model description
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            More information needed
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            ## Intended uses & limitations
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            More information needed
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            ## Training and evaluation data
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            More information needed
         | 
| 39 | 
            +
             | 
| 40 | 
            +
            ## Training procedure
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            ### Training hyperparameters
         | 
| 43 | 
            +
             | 
| 44 | 
            +
            The following hyperparameters were used during training:
         | 
| 45 | 
            +
            - learning_rate: 0.001
         | 
| 46 | 
            +
            - train_batch_size: 32
         | 
| 47 | 
            +
            - eval_batch_size: 32
         | 
| 48 | 
            +
            - seed: 42
         | 
| 49 | 
            +
            - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
         | 
| 50 | 
            +
            - lr_scheduler_type: cosine
         | 
| 51 | 
            +
            - num_epochs: 5.0
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            ### Training results
         | 
| 54 | 
            +
             | 
| 55 | 
            +
            | Training Loss | Epoch | Step | Validation Loss | Der    | False Alarm | Missed Detection | Confusion |
         | 
| 56 | 
            +
            |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:|
         | 
| 57 | 
            +
            | 0.655         | 1.0   | 382  | 0.5330          | 0.1799 | 0.0680      | 0.0756           | 0.0364    |
         | 
| 58 | 
            +
            | 0.6293        | 2.0   | 764  | 0.5216          | 0.1747 | 0.0662      | 0.0746           | 0.0339    |
         | 
| 59 | 
            +
            | 0.6145        | 3.0   | 1146 | 0.5244          | 0.1770 | 0.0759      | 0.0686           | 0.0325    |
         | 
| 60 | 
            +
            | 0.5956        | 4.0   | 1528 | 0.5185          | 0.1734 | 0.0732      | 0.0687           | 0.0315    |
         | 
| 61 | 
            +
            | 0.5989        | 5.0   | 1910 | 0.5198          | 0.1745 | 0.0739      | 0.0687           | 0.0319    |
         | 
| 62 | 
            +
             | 
| 63 | 
            +
             | 
| 64 | 
            +
            ### Framework versions
         | 
| 65 | 
            +
             | 
| 66 | 
            +
            - Transformers 4.40.0
         | 
| 67 | 
            +
            - Pytorch 2.2.2+cu121
         | 
| 68 | 
            +
            - Datasets 2.18.0
         | 
| 69 | 
            +
            - Tokenizers 0.19.1
         | 
    	
        model.safetensors
    CHANGED
    
    | @@ -1,3 +1,3 @@ | |
| 1 | 
             
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            -
            oid sha256: | 
| 3 | 
             
            size 5899124
         | 
|  | |
| 1 | 
             
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:b8f025903a50d90c227ad6e86c2855ad05b3f765739de9c4ea633dd058c22da0
         | 
| 3 | 
             
            size 5899124
         | 

