Upload BertForDiacritization.py
Browse files- BertForDiacritization.py +190 -0
BertForDiacritization.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import List, Optional, Tuple, Union
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from transformers.utils import ModelOutput
|
6 |
+
from transformers import BertPreTrainedModel, BertModel, BertTokenizerFast
|
7 |
+
|
8 |
+
# MAT_LECT => Matres Lectionis, known in Hebrew as Em Kriaa.
|
9 |
+
MAT_LECT_TOKEN = '<MAT_LECT>'
|
10 |
+
NIKUD_CLASSES = ['', MAT_LECT_TOKEN, '\u05BC', '\u05B0', '\u05B1', '\u05B2', '\u05B3', '\u05B4', '\u05B5', '\u05B6', '\u05B7', '\u05B8', '\u05B9', '\u05BA', '\u05BB', '\u05BC\u05B0', '\u05BC\u05B1', '\u05BC\u05B2', '\u05BC\u05B3', '\u05BC\u05B4', '\u05BC\u05B5', '\u05BC\u05B6', '\u05BC\u05B7', '\u05BC\u05B8', '\u05BC\u05B9', '\u05BC\u05BA', '\u05BC\u05BB', '\u05C7', '\u05BC\u05C7']
|
11 |
+
SHIN_CLASSES = ['\u05C1', '\u05C2'] # shin, sin
|
12 |
+
|
13 |
+
@dataclass
|
14 |
+
class MenakedLogitsOutput(ModelOutput):
|
15 |
+
nikud_logits: torch.FloatTensor = None
|
16 |
+
shin_logits: torch.FloatTensor = None
|
17 |
+
|
18 |
+
def detach(self):
|
19 |
+
return MenakedLogitsOutput(self.nikud_logits.detach(), self.shin_logits.detach())
|
20 |
+
|
21 |
+
@dataclass
|
22 |
+
class MenakedOutput(ModelOutput):
|
23 |
+
loss: Optional[torch.FloatTensor] = None
|
24 |
+
logits: Optional[MenakedLogitsOutput] = None
|
25 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
26 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
27 |
+
|
28 |
+
@dataclass
|
29 |
+
class MenakedLabels(ModelOutput):
|
30 |
+
nikud_labels: Optional[torch.FloatTensor] = None
|
31 |
+
shin_labels: Optional[torch.FloatTensor] = None
|
32 |
+
|
33 |
+
def detach(self):
|
34 |
+
return MenakedLabels(self.nikud_labels.detach(), self.shin_labels.detach())
|
35 |
+
|
36 |
+
def to(self, device):
|
37 |
+
return MenakedLabels(self.nikud_labels.to(device), self.shin_labels.to(device))
|
38 |
+
|
39 |
+
class BertMenakedHead(nn.Module):
|
40 |
+
def __init__(self, config):
|
41 |
+
super().__init__()
|
42 |
+
self.config = config
|
43 |
+
|
44 |
+
if not hasattr(config, 'nikud_classes'):
|
45 |
+
config.nikud_classes = NIKUD_CLASSES
|
46 |
+
config.shin_classes = SHIN_CLASSES
|
47 |
+
config.mat_lect_token = MAT_LECT_TOKEN
|
48 |
+
|
49 |
+
self.num_nikud_classes = len(config.nikud_classes)
|
50 |
+
self.num_shin_classes = len(config.shin_classes)
|
51 |
+
|
52 |
+
# create our classifiers
|
53 |
+
self.nikud_cls = nn.Linear(config.hidden_size, self.num_nikud_classes)
|
54 |
+
self.shin_cls = nn.Linear(config.hidden_size, self.num_shin_classes)
|
55 |
+
|
56 |
+
def forward(
|
57 |
+
self,
|
58 |
+
hidden_states: torch.Tensor,
|
59 |
+
labels: Optional[MenakedLabels] = None):
|
60 |
+
|
61 |
+
# run each of the classifiers on the transformed output
|
62 |
+
nikud_logits = self.nikud_cls(hidden_states)
|
63 |
+
shin_logits = self.shin_cls(hidden_states)
|
64 |
+
|
65 |
+
loss = None
|
66 |
+
if labels is not None:
|
67 |
+
loss_fct = nn.CrossEntropyLoss()
|
68 |
+
loss = loss_fct(nikud_logits.view(-1, self.num_nikud_classes), labels.nikud_labels.view(-1))
|
69 |
+
loss += loss_fct(shin_logits.view(-1, self.num_shin_classes), labels.shin_labels.view(-1))
|
70 |
+
|
71 |
+
return loss, MenakedLogitsOutput(nikud_logits, shin_logits)
|
72 |
+
|
73 |
+
class BertForDiacritization(BertPreTrainedModel):
|
74 |
+
def __init__(self, config):
|
75 |
+
super().__init__(config)
|
76 |
+
self.config = config
|
77 |
+
self.bert = BertModel(config, add_pooling_layer=False)
|
78 |
+
|
79 |
+
classifier_dropout = config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
80 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
81 |
+
|
82 |
+
self.menaked = BertMenakedHead(config)
|
83 |
+
|
84 |
+
# Initialize weights and apply final processing
|
85 |
+
self.post_init()
|
86 |
+
|
87 |
+
def forward(
|
88 |
+
self,
|
89 |
+
input_ids: Optional[torch.Tensor] = None,
|
90 |
+
attention_mask: Optional[torch.Tensor] = None,
|
91 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
92 |
+
position_ids: Optional[torch.Tensor] = None,
|
93 |
+
head_mask: Optional[torch.Tensor] = None,
|
94 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
95 |
+
labels: Optional[torch.Tensor] = None,
|
96 |
+
output_attentions: Optional[bool] = None,
|
97 |
+
output_hidden_states: Optional[bool] = None,
|
98 |
+
return_dict: Optional[bool] = None,
|
99 |
+
) -> Union[Tuple[torch.Tensor], MenakedOutput]:
|
100 |
+
|
101 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
102 |
+
|
103 |
+
bert_outputs = self.bert(
|
104 |
+
input_ids,
|
105 |
+
attention_mask=attention_mask,
|
106 |
+
token_type_ids=token_type_ids,
|
107 |
+
position_ids=position_ids,
|
108 |
+
head_mask=head_mask,
|
109 |
+
inputs_embeds=inputs_embeds,
|
110 |
+
output_attentions=output_attentions,
|
111 |
+
output_hidden_states=output_hidden_states,
|
112 |
+
return_dict=return_dict,
|
113 |
+
)
|
114 |
+
|
115 |
+
hidden_states = bert_outputs[0]
|
116 |
+
hidden_states = self.dropout(hidden_states)
|
117 |
+
|
118 |
+
loss, logits = self.menaked(hidden_states, labels)
|
119 |
+
|
120 |
+
if not return_dict:
|
121 |
+
return (loss,logits) + bert_outputs[2:]
|
122 |
+
|
123 |
+
return MenakedOutput(
|
124 |
+
loss=loss,
|
125 |
+
logits=logits,
|
126 |
+
hidden_states=bert_outputs.hidden_states,
|
127 |
+
attentions=bert_outputs.attentions,
|
128 |
+
)
|
129 |
+
|
130 |
+
def predict(self, sentences: List[str], tokenizer: BertTokenizerFast, mark_matres_lectionis: str = None, padding='longest'):
|
131 |
+
sentences = [remove_nikkud(sentence) for sentence in sentences]
|
132 |
+
# assert the lengths aren't out of range
|
133 |
+
assert all(len(sentence) + 2 <= tokenizer.model_max_length for sentence in sentences), f'All sentences must be <= {tokenizer.model_max_length}, please segment and try again'
|
134 |
+
|
135 |
+
# tokenize the inputs and convert them to relevant device
|
136 |
+
inputs = tokenizer(sentences, padding=padding, truncation=True, return_tensors='pt', return_offsets_mapping=True)
|
137 |
+
offset_mapping = inputs.pop('offset_mapping')
|
138 |
+
inputs = {k:v.to(self.device) for k,v in inputs.items()}
|
139 |
+
|
140 |
+
# calculate the predictions
|
141 |
+
logits = self.forward(**inputs, return_dict=True).logits
|
142 |
+
nikud_predictions = logits.nikud_logits.argmax(dim=-1).tolist()
|
143 |
+
shin_predictions = logits.shin_logits.argmax(dim=-1).tolist()
|
144 |
+
|
145 |
+
ret = []
|
146 |
+
for sent_idx,(sentence,sent_offsets) in enumerate(zip(sentences, offset_mapping)):
|
147 |
+
# assign the nikud to each letter!
|
148 |
+
output = []
|
149 |
+
prev_index = 0
|
150 |
+
for idx,offsets in enumerate(sent_offsets):
|
151 |
+
# add in anything we missed
|
152 |
+
if offsets[0] > prev_index:
|
153 |
+
output.append(sentence[prev_index:offsets[0]])
|
154 |
+
if offsets[1] - offsets[0] != 1: continue
|
155 |
+
|
156 |
+
# get our next char
|
157 |
+
char = sentence[offsets[0]:offsets[1]]
|
158 |
+
prev_index = offsets[1]
|
159 |
+
if not is_hebrew_letter(char):
|
160 |
+
output.append(char)
|
161 |
+
continue
|
162 |
+
|
163 |
+
nikud = self.config.nikud_classes[nikud_predictions[sent_idx][idx]]
|
164 |
+
shin = '' if char != '砖' else self.config.shin_classes[shin_predictions[sent_idx][idx]]
|
165 |
+
|
166 |
+
# check for matres lectionis
|
167 |
+
if nikud == self.config.mat_lect_token:
|
168 |
+
if not is_matres_letter(char): nikud = '' # don't allow matres on irrelevant letters
|
169 |
+
elif mark_matres_lectionis is not None: nikud = mark_matres_lectionis
|
170 |
+
else: continue
|
171 |
+
|
172 |
+
output.append(char + shin + nikud)
|
173 |
+
output.append(sentence[prev_index:])
|
174 |
+
ret.append(''.join(output))
|
175 |
+
|
176 |
+
return ret
|
177 |
+
|
178 |
+
ALEF_ORD = ord('讗')
|
179 |
+
TAF_ORD = ord('转')
|
180 |
+
def is_hebrew_letter(char):
|
181 |
+
return ALEF_ORD <= ord(char) <= TAF_ORD
|
182 |
+
|
183 |
+
MATRES_LETTERS = list('讗讜讬')
|
184 |
+
def is_matres_letter(char):
|
185 |
+
return char in MATRES_LETTERS
|
186 |
+
|
187 |
+
import re
|
188 |
+
nikud_pattern = re.compile(r'[\u05B0-\u05BD\u05C1\u05C2\u05C7]')
|
189 |
+
def remove_nikkud(text):
|
190 |
+
return nikud_pattern.sub('', text)
|