--- library_name: peft license: gemma base_model: google/paligemma-3b-pt-224 tags: - generated_from_trainer datasets: - imagefolder - FastJobs/Visual_Emotional_Analysis model-index: - name: emotion_classification results: [] --- # emotion_classification This model is a fine-tuned version of [google/paligemma-3b-pt-224](https://huggingface.co/google/paligemma-3b-pt-224) on the [FastJobs/Visual_Emotional_Analysis](https://huggingface.co/datasets/FastJobs/Visual_Emotional_Analysis) dataset. ## Training Data This model was trained on the [FastJobs/Visual_Emotional_Analysis](https://huggingface.co/datasets/FastJobs/Visual_Emotional_Analysis) dataset. The dataset contains: - **800 images** annotated with **8 emotion labels**: - Anger - Contempt - Disgust - Fear - Happy - Neutral - Sad - Surprise ## Intended uses & limitations ### Intended Uses - Emotion classification from visual inputs (images). ### Limitations - May reflect biases from the training dataset. - Performance may degrade in domains outside the training data. - Not suitable for critical or sensitive decision-making tasks. ## How to use this model ```python from transformers import (PaliGemmaProcessor,PaliGemmaForConditionalGeneration,) from transformers.image_utils import load_image import torch from transformers import BitsAndBytesConfig from peft import get_peft_model from huggingface_hub import login from PIL import Image login(api_key) device = "cuda" if torch.cuda.is_available() else "CPU" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_type=torch.bfloat16 ) # Load base model model_id = "google/paligemma-3b-pt-224" model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, quantization_config=bnb_config, device_map="auto") processor = PaliGemmaProcessor.from_pretrained(model_id) # Load adapter adapter_path = "digo-prayudha/emotion_classification" model = PeftModel.from_pretrained(model, adapter_path) image = Image.open("image.jpg").convert("RGB") prompt = ( "Classify the emotion expressed in this image." ) inputs = processor( text=prompt, images=image, return_tensors="pt", padding="longest", tokenize_newline_separately=False ).to(model.device) model.eval() with torch.no_grad(): outputs = model.generate(**inputs) decoded_output = processor.decode(outputs[0], skip_special_tokens=True) print("Predicted Emotion:", decoded_output) ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 5 ### Training results | Step | Validation Loss | |:----:|:---------------:| | 100 | 2.684700 | | 200 | 1.282700 | | 300 | 1.085600 | | 400 | 0.984500 | | 500 | 0.861300 | | 600 | 0.822900 | | 700 | 0.807100 | | 800 | 0.753300 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0