dile3 commited on
Commit
44eb1de
·
verified ·
1 Parent(s): 75420d6

dile3/biobert-ner-ncbi

Browse files
Files changed (3) hide show
  1. README.md +17 -19
  2. model.safetensors +1 -1
  3. tokenizer.json +2 -2
README.md CHANGED
@@ -3,8 +3,6 @@ library_name: transformers
3
  base_model: dmis-lab/biobert-base-cased-v1.1
4
  tags:
5
  - generated_from_trainer
6
- datasets:
7
- - ncbi_disease
8
  model-index:
9
  - name: biobert-ner-model
10
  results: []
@@ -15,17 +13,17 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  # biobert-ner-model
17
 
18
- This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.1](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1) on the ncbi_disease dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.0557
21
- - Compositemention: {'precision': 0.2765957446808511, 'recall': 0.37142857142857144, 'f1': 0.3170731707317073, 'number': 35}
22
- - Diseaseclass: {'precision': 0.5, 'recall': 0.6031746031746031, 'f1': 0.5467625899280575, 'number': 126}
23
- - Modifier: {'precision': 0.7665198237885462, 'recall': 0.8169014084507042, 'f1': 0.7909090909090909, 'number': 213}
24
- - Specificdisease: {'precision': 0.75625, 'recall': 0.8810679611650486, 'f1': 0.81390134529148, 'number': 412}
25
- - Overall Precision: 0.6909
26
- - Overall Recall: 0.7964
27
- - Overall F1: 0.7400
28
- - Overall Accuracy: 0.9854
29
 
30
  ## Model description
31
 
@@ -54,13 +52,13 @@ The following hyperparameters were used during training:
54
 
55
  ### Training results
56
 
57
- | Training Loss | Epoch | Step | Validation Loss | Compositemention | Diseaseclass | Modifier | Specificdisease | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
- |:-------------:|:-----:|:----:|:---------------:|:-----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
- | 0.0688 | 1.0 | 75 | 0.0687 | {'precision': 0.075, 'recall': 0.08571428571428572, 'f1': 0.08, 'number': 35} | {'precision': 0.3684210526315789, 'recall': 0.4444444444444444, 'f1': 0.4028776978417266, 'number': 126} | {'precision': 0.5581395348837209, 'recall': 0.676056338028169, 'f1': 0.6114649681528661, 'number': 213} | {'precision': 0.6083788706739527, 'recall': 0.8106796116504854, 'f1': 0.6951092611862643, 'number': 412} | 0.5375 | 0.6832 | 0.6017 | 0.9797 |
60
- | 0.0416 | 2.0 | 150 | 0.0621 | {'precision': 0.038461538461538464, 'recall': 0.02857142857142857, 'f1': 0.03278688524590164, 'number': 35} | {'precision': 0.3706896551724138, 'recall': 0.3412698412698413, 'f1': 0.3553719008264463, 'number': 126} | {'precision': 0.6653225806451613, 'recall': 0.7746478873239436, 'f1': 0.7158351409978307, 'number': 213} | {'precision': 0.6208695652173913, 'recall': 0.866504854368932, 'f1': 0.7234042553191489, 'number': 412} | 0.5865 | 0.7201 | 0.6465 | 0.9817 |
61
- | 0.0399 | 3.0 | 225 | 0.0537 | {'precision': 0.26666666666666666, 'recall': 0.34285714285714286, 'f1': 0.3, 'number': 35} | {'precision': 0.45390070921985815, 'recall': 0.5079365079365079, 'f1': 0.4794007490636704, 'number': 126} | {'precision': 0.7522123893805309, 'recall': 0.7981220657276995, 'f1': 0.7744874715261958, 'number': 213} | {'precision': 0.6927592954990215, 'recall': 0.8592233009708737, 'f1': 0.7670639219934994, 'number': 412} | 0.6501 | 0.7634 | 0.7022 | 0.9848 |
62
- | 0.0263 | 4.0 | 300 | 0.0548 | {'precision': 0.3125, 'recall': 0.42857142857142855, 'f1': 0.3614457831325301, 'number': 35} | {'precision': 0.47096774193548385, 'recall': 0.5793650793650794, 'f1': 0.5195729537366549, 'number': 126} | {'precision': 0.776255707762557, 'recall': 0.7981220657276995, 'f1': 0.7870370370370371, 'number': 213} | {'precision': 0.7433264887063655, 'recall': 0.8786407766990292, 'f1': 0.8053392658509455, 'number': 412} | 0.6821 | 0.7888 | 0.7316 | 0.9852 |
63
- | 0.0214 | 5.0 | 375 | 0.0557 | {'precision': 0.2765957446808511, 'recall': 0.37142857142857144, 'f1': 0.3170731707317073, 'number': 35} | {'precision': 0.5, 'recall': 0.6031746031746031, 'f1': 0.5467625899280575, 'number': 126} | {'precision': 0.7665198237885462, 'recall': 0.8169014084507042, 'f1': 0.7909090909090909, 'number': 213} | {'precision': 0.75625, 'recall': 0.8810679611650486, 'f1': 0.81390134529148, 'number': 412} | 0.6909 | 0.7964 | 0.7400 | 0.9854 |
64
 
65
 
66
  ### Framework versions
 
3
  base_model: dmis-lab/biobert-base-cased-v1.1
4
  tags:
5
  - generated_from_trainer
 
 
6
  model-index:
7
  - name: biobert-ner-model
8
  results: []
 
13
 
14
  # biobert-ner-model
15
 
16
+ This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.1](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1) on the None dataset.
17
  It achieves the following results on the evaluation set:
18
+ - Loss: 0.0255
19
+ - Compositemention: {'precision': 0.8108108108108109, 'recall': 0.8571428571428571, 'f1': 0.8333333333333334, 'number': 35}
20
+ - Diseaseclass: {'precision': 0.6277372262773723, 'recall': 0.6825396825396826, 'f1': 0.6539923954372623, 'number': 126}
21
+ - Modifier: {'precision': 0.7520325203252033, 'recall': 0.8644859813084113, 'f1': 0.8043478260869567, 'number': 214}
22
+ - Specificdisease: {'precision': 0.8380952380952381, 'recall': 0.8543689320388349, 'f1': 0.8461538461538461, 'number': 412}
23
+ - Overall Precision: 0.7774
24
+ - Overall Recall: 0.8297
25
+ - Overall F1: 0.8027
26
+ - Overall Accuracy: 0.9944
27
 
28
  ## Model description
29
 
 
52
 
53
  ### Training results
54
 
55
+ | Training Loss | Epoch | Step | Validation Loss | Compositemention | Diseaseclass | Modifier | Specificdisease | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
56
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
57
+ | 0.0247 | 1.0 | 717 | 0.0271 | {'precision': 0.3076923076923077, 'recall': 0.34285714285714286, 'f1': 0.3243243243243243, 'number': 35} | {'precision': 0.35909090909090907, 'recall': 0.626984126984127, 'f1': 0.4566473988439306, 'number': 126} | {'precision': 0.6027397260273972, 'recall': 0.822429906542056, 'f1': 0.6956521739130435, 'number': 214} | {'precision': 0.7126436781609196, 'recall': 0.7524271844660194, 'f1': 0.7319952774498228, 'number': 412} | 0.5852 | 0.7332 | 0.6509 | 0.9912 |
58
+ | 0.0162 | 2.0 | 1434 | 0.0233 | {'precision': 0.7948717948717948, 'recall': 0.8857142857142857, 'f1': 0.8378378378378378, 'number': 35} | {'precision': 0.5666666666666667, 'recall': 0.5396825396825397, 'f1': 0.5528455284552845, 'number': 126} | {'precision': 0.746938775510204, 'recall': 0.8551401869158879, 'f1': 0.7973856209150327, 'number': 214} | {'precision': 0.7850877192982456, 'recall': 0.8689320388349514, 'f1': 0.8248847926267281, 'number': 412} | 0.7442 | 0.8132 | 0.7772 | 0.9941 |
59
+ | 0.0031 | 3.0 | 2151 | 0.0219 | {'precision': 0.8157894736842105, 'recall': 0.8857142857142857, 'f1': 0.8493150684931505, 'number': 35} | {'precision': 0.5572519083969466, 'recall': 0.5793650793650794, 'f1': 0.5680933852140078, 'number': 126} | {'precision': 0.7206477732793523, 'recall': 0.8317757009345794, 'f1': 0.772234273318872, 'number': 214} | {'precision': 0.8, 'recall': 0.8640776699029126, 'f1': 0.8308051341890316, 'number': 412} | 0.7410 | 0.8107 | 0.7743 | 0.9943 |
60
+ | 0.002 | 4.0 | 2868 | 0.0236 | {'precision': 0.8648648648648649, 'recall': 0.9142857142857143, 'f1': 0.888888888888889, 'number': 35} | {'precision': 0.6223776223776224, 'recall': 0.7063492063492064, 'f1': 0.6617100371747212, 'number': 126} | {'precision': 0.7312252964426877, 'recall': 0.8644859813084113, 'f1': 0.7922912205567451, 'number': 214} | {'precision': 0.837708830548926, 'recall': 0.8519417475728155, 'f1': 0.8447653429602887, 'number': 412} | 0.7711 | 0.8348 | 0.8017 | 0.9945 |
61
+ | 0.004 | 5.0 | 3585 | 0.0255 | {'precision': 0.8108108108108109, 'recall': 0.8571428571428571, 'f1': 0.8333333333333334, 'number': 35} | {'precision': 0.6277372262773723, 'recall': 0.6825396825396826, 'f1': 0.6539923954372623, 'number': 126} | {'precision': 0.7520325203252033, 'recall': 0.8644859813084113, 'f1': 0.8043478260869567, 'number': 214} | {'precision': 0.8380952380952381, 'recall': 0.8543689320388349, 'f1': 0.8461538461538461, 'number': 412} | 0.7774 | 0.8297 | 0.8027 | 0.9944 |
62
 
63
 
64
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e3308e862d61734a2d4a64a692b83cd8cd8b803afa6fb271489503e193222b79
3
  size 430929740
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db5fee965a9673599ff913c6d3aa24f1e1d4352604eb21292abde13fe2c4c35e
3
  size 430929740
tokenizer.json CHANGED
@@ -2,13 +2,13 @@
2
  "version": "1.0",
3
  "truncation": {
4
  "direction": "Right",
5
- "max_length": 512,
6
  "strategy": "LongestFirst",
7
  "stride": 0
8
  },
9
  "padding": {
10
  "strategy": {
11
- "Fixed": 512
12
  },
13
  "direction": "Right",
14
  "pad_to_multiple_of": null,
 
2
  "version": "1.0",
3
  "truncation": {
4
  "direction": "Right",
5
+ "max_length": 128,
6
  "strategy": "LongestFirst",
7
  "stride": 0
8
  },
9
  "padding": {
10
  "strategy": {
11
+ "Fixed": 128
12
  },
13
  "direction": "Right",
14
  "pad_to_multiple_of": null,