dile3/biobert-ner-ncbi
Browse files- README.md +15 -14
- model.safetensors +1 -1
- training_args.bin +1 -1
README.md
CHANGED
@@ -15,15 +15,15 @@ should probably proofread and complete it, then remove this comment. -->
|
|
15 |
|
16 |
This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.1](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1) on the None dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
-
- Loss: 0.
|
19 |
- Compositemention: {'precision': 0.8, 'recall': 0.9142857142857143, 'f1': 0.8533333333333333, 'number': 35}
|
20 |
-
- Diseaseclass: {'precision': 0.
|
21 |
-
- Modifier: {'precision': 0.
|
22 |
-
- Specificdisease: {'precision': 0.
|
23 |
-
- Overall Precision: 0.
|
24 |
-
- Overall Recall: 0.
|
25 |
-
- Overall F1: 0.
|
26 |
-
- Overall Accuracy: 0.
|
27 |
|
28 |
## Model description
|
29 |
|
@@ -48,17 +48,18 @@ The following hyperparameters were used during training:
|
|
48 |
- seed: 42
|
49 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
50 |
- lr_scheduler_type: linear
|
51 |
-
- num_epochs:
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Compositemention | Diseaseclass | Modifier | Specificdisease | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
57 |
-
| 0.
|
58 |
-
| 0.
|
59 |
-
| 0.
|
60 |
-
| 0.
|
61 |
-
| 0.
|
|
|
62 |
|
63 |
|
64 |
### Framework versions
|
|
|
15 |
|
16 |
This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.1](https://huggingface.co/dmis-lab/biobert-base-cased-v1.1) on the None dataset.
|
17 |
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0386
|
19 |
- Compositemention: {'precision': 0.8, 'recall': 0.9142857142857143, 'f1': 0.8533333333333333, 'number': 35}
|
20 |
+
- Diseaseclass: {'precision': 0.5341614906832298, 'recall': 0.6825396825396826, 'f1': 0.5993031358885017, 'number': 126}
|
21 |
+
- Modifier: {'precision': 0.7014925373134329, 'recall': 0.8785046728971962, 'f1': 0.7800829875518672, 'number': 214}
|
22 |
+
- Specificdisease: {'precision': 0.8254716981132075, 'recall': 0.8495145631067961, 'f1': 0.8373205741626795, 'number': 412}
|
23 |
+
- Overall Precision: 0.7346
|
24 |
+
- Overall Recall: 0.8335
|
25 |
+
- Overall F1: 0.7810
|
26 |
+
- Overall Accuracy: 0.9934
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
48 |
- seed: 42
|
49 |
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
50 |
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 20
|
52 |
|
53 |
### Training results
|
54 |
|
55 |
| Training Loss | Epoch | Step | Validation Loss | Compositemention | Diseaseclass | Modifier | Specificdisease | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
56 |
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
57 |
+
| 0.005 | 1.0 | 359 | 0.0271 | {'precision': 0.725, 'recall': 0.8285714285714286, 'f1': 0.7733333333333333, 'number': 35} | {'precision': 0.5263157894736842, 'recall': 0.7142857142857143, 'f1': 0.6060606060606061, 'number': 126} | {'precision': 0.7198443579766537, 'recall': 0.8644859813084113, 'f1': 0.7855626326963906, 'number': 214} | {'precision': 0.8103448275862069, 'recall': 0.7985436893203883, 'f1': 0.80440097799511, 'number': 412} | 0.7243 | 0.8043 | 0.7622 | 0.9939 |
|
58 |
+
| 0.0049 | 2.0 | 718 | 0.0277 | {'precision': 0.775, 'recall': 0.8857142857142857, 'f1': 0.8266666666666667, 'number': 35} | {'precision': 0.5891472868217055, 'recall': 0.6031746031746031, 'f1': 0.596078431372549, 'number': 126} | {'precision': 0.7195121951219512, 'recall': 0.8271028037383178, 'f1': 0.7695652173913042, 'number': 214} | {'precision': 0.7707423580786026, 'recall': 0.8567961165048543, 'f1': 0.8114942528735631, 'number': 412} | 0.7297 | 0.8094 | 0.7675 | 0.9934 |
|
59 |
+
| 0.0031 | 3.0 | 1077 | 0.0330 | {'precision': 0.7142857142857143, 'recall': 0.8571428571428571, 'f1': 0.7792207792207793, 'number': 35} | {'precision': 0.4939759036144578, 'recall': 0.6507936507936508, 'f1': 0.5616438356164383, 'number': 126} | {'precision': 0.7368421052631579, 'recall': 0.8504672897196262, 'f1': 0.789587852494577, 'number': 214} | {'precision': 0.8076923076923077, 'recall': 0.866504854368932, 'f1': 0.8360655737704917, 'number': 412} | 0.7258 | 0.8272 | 0.7732 | 0.9935 |
|
60 |
+
| 0.0008 | 4.0 | 1436 | 0.0324 | {'precision': 0.7567567567567568, 'recall': 0.8, 'f1': 0.7777777777777778, 'number': 35} | {'precision': 0.6014492753623188, 'recall': 0.6587301587301587, 'f1': 0.6287878787878789, 'number': 126} | {'precision': 0.746938775510204, 'recall': 0.8551401869158879, 'f1': 0.7973856209150327, 'number': 214} | {'precision': 0.8389423076923077, 'recall': 0.8470873786407767, 'f1': 0.8429951690821257, 'number': 412} | 0.7691 | 0.8170 | 0.7924 | 0.9940 |
|
61 |
+
| 0.0019 | 5.0 | 1795 | 0.0314 | {'precision': 0.7804878048780488, 'recall': 0.9142857142857143, 'f1': 0.8421052631578947, 'number': 35} | {'precision': 0.6356589147286822, 'recall': 0.6507936507936508, 'f1': 0.6431372549019608, 'number': 126} | {'precision': 0.7615062761506276, 'recall': 0.8504672897196262, 'f1': 0.8035320088300221, 'number': 214} | {'precision': 0.8148148148148148, 'recall': 0.8543689320388349, 'f1': 0.8341232227488151, 'number': 412} | 0.7705 | 0.8234 | 0.7961 | 0.9939 |
|
62 |
+
| 0.0017 | 6.0 | 2154 | 0.0386 | {'precision': 0.8, 'recall': 0.9142857142857143, 'f1': 0.8533333333333333, 'number': 35} | {'precision': 0.5341614906832298, 'recall': 0.6825396825396826, 'f1': 0.5993031358885017, 'number': 126} | {'precision': 0.7014925373134329, 'recall': 0.8785046728971962, 'f1': 0.7800829875518672, 'number': 214} | {'precision': 0.8254716981132075, 'recall': 0.8495145631067961, 'f1': 0.8373205741626795, 'number': 412} | 0.7346 | 0.8335 | 0.7810 | 0.9934 |
|
63 |
|
64 |
|
65 |
### Framework versions
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 430929740
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82d9da89bff069b6a0418e5e0df8233fe3833053f7b7308b37cd31d8a4c3aa91
|
3 |
size 430929740
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 5240
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8606adc4ad54e20931bdbf03a89c6dd909f34ef6d6447a790a87c6387ec58ba3
|
3 |
size 5240
|