Add new SentenceTransformer model
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +470 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +55 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:48914
|
8 |
+
- loss:MultipleNegativesRankingLoss
|
9 |
+
base_model: intfloat/multilingual-e5-base
|
10 |
+
widget:
|
11 |
+
- source_sentence: Glæde
|
12 |
+
sentences:
|
13 |
+
- Den 4. maj fejrer vi glæden, håbet og friheden.
|
14 |
+
- – fordi vi ville – og fordi der var en begyndende efterspørgsel – og den efterspørgsel
|
15 |
+
hænger selvfølgelig sammen med, at det er blevet økonomisk muligt for flere og
|
16 |
+
flere at købe en elbil. Ladestanderen bliver brugt dagligt, og jeg gætter på,
|
17 |
+
at vi om få år vælger at opsætte nogle flere til glæde for lærere og elever på
|
18 |
+
BG og andre der benytter vores parkeringsplads.
|
19 |
+
- Forening viser tydeligt, hvor hildede vi har været i Synet paa det politiske Arbejde.
|
20 |
+
Upartipolitisk! Hvilket Monstrum af et Ord, og hvilken Negativisme det indebærer.
|
21 |
+
Ser man paa vore Medlemmers højst uensartedede Herkomst og Livsindstilling, turde
|
22 |
+
det iøvrigt være en ganske overflødig Bemærkning, at vort Arbejde ikke kan tages
|
23 |
+
til Indtægt for noget specielt politisk Parti.
|
24 |
+
- source_sentence: Kontekst utilstrækkelig
|
25 |
+
sentences:
|
26 |
+
- Til støtte for De Forenede Nationers aktion i Korea vil regeringen fortsat yde
|
27 |
+
sit bidrag ved at stille hospitalsskibet ”Jutlandia" til rådighed for De Forenede
|
28 |
+
Nationers enhedskommando, og regeringen vil forberede Danmarks deltagelse i det
|
29 |
+
internationale hjælpe- og genopbygningsarbejde i Korea efter fjendtlighedernes
|
30 |
+
afslutning.
|
31 |
+
- Og dertil kommer de mange tusinde, som får suppleret deres indkomst med offentlige
|
32 |
+
tilskud eller kontantydelser. Det er alt for mange. Det kan vi ikke være bekendt.
|
33 |
+
Det kan vi ikke leve med.
|
34 |
+
- og det er at
|
35 |
+
- source_sentence: Forvirring
|
36 |
+
sentences:
|
37 |
+
- Som De tidligere har hørt, blev der i 1913 i afdøde Lærer Ludvig Triers Bo oprettet
|
38 |
+
et Legat, kaldet „Ludvig Triers Legat til Fremme af Kvinders økonomiske Selvstændighed”.
|
39 |
+
Og D. K. anmodedes om at styre dette Legat og uddele Renten af Kapitalen, naar
|
40 |
+
denne engang blev ledig. Foreløbig skulde nogle Slægtninge af Ludvig Trier nyde
|
41 |
+
Renten, saa længe de levede. Nu er imidlertid en Kapital paa omkring 14,000 Kr.
|
42 |
+
i Februar i Aar bleven ledig ved en Legatnyders Død; den vil i Juni Termin blive
|
43 |
+
udbetalt til D. K., og vi vil altsaa til næste Aar faa en endnu større Sum at
|
44 |
+
uddele til hint udmærkede Formaal.
|
45 |
+
- Uddannelse
|
46 |
+
- I don't know what to say.
|
47 |
+
- source_sentence: Medicin
|
48 |
+
sentences:
|
49 |
+
- Jeg hedder Amal, og jeg er 19 år gammel, jeg er lige pt i gang med et sabbatår
|
50 |
+
hvor jeg efterfølgende gerne vil starte på drømmestudiet, som er medicin[.]
|
51 |
+
- 'Vi skal være Dig gode og [faste] Sønner og Døtre, Danmark, [det] lover vi Dig
|
52 |
+
i Dag, og det [giver] vi Dig Haandslag paa, [Kong] Christian. Ja, om kongen [samler]
|
53 |
+
vi os i denne Stund, den [største] vor Slægt har oplevet. Naar [svundne] Dage
|
54 |
+
Folket havde valgt [en Konge], stævnede de til Tinge [for at] hylde ham under
|
55 |
+
aaben [Himmel]. Den 10. Februar, da vi [Sønderjyder] stemte os hjem, kaarede vi
|
56 |
+
[Kong] Christian af Danmark til Konge. [Denne] Dag løfter vi alle om een vor Konge
|
57 |
+
paa Skjold; som frie [Mænd] og Kvinder hylder vi Danmarks konge og Dronning, nu
|
58 |
+
ogsaa [vor] Konge og Dronning, idet vi [samles] i et tusindstemmigt [Hyldestråb]:
|
59 |
+
Kong Christian og [Dronning] Alexandrine leve!'
|
60 |
+
- Findes der noget menneske, ærede dommere, eller vil der nogen sinde blive født
|
61 |
+
noget menneske, der i stedet for 2.600 dr. ville foretrække at betale 3.360 dr.
|
62 |
+
og en rente på 560 dr., i alt 3.920 dr., det beløb, som Formion påstår at have
|
63 |
+
lånt og afleveret til Lampis? Betalte han virkelig i Bosporos – og det 13 miner
|
64 |
+
for meget - når han havde mulighed for at betale beløbet tilbage i Athen som et
|
65 |
+
returlån?
|
66 |
+
- source_sentence: Bygge- og anlægsvirksomhed
|
67 |
+
sentences:
|
68 |
+
- For hvis disse årsager alene var nok,
|
69 |
+
- Venligst
|
70 |
+
- 'Den betydelige forringelse i balancen udadtil hænger sammen med tre forhold:
|
71 |
+
den stærke stigning i befolkningens forbrug, den stærke stigning i den samlede
|
72 |
+
bygge- og anlægsvirksomhed og stigningen i den øvrige investering.'
|
73 |
+
pipeline_tag: sentence-similarity
|
74 |
+
library_name: sentence-transformers
|
75 |
+
metrics:
|
76 |
+
- cosine_accuracy
|
77 |
+
model-index:
|
78 |
+
- name: SentenceTransformer based on intfloat/multilingual-e5-base
|
79 |
+
results:
|
80 |
+
- task:
|
81 |
+
type: triplet
|
82 |
+
name: Triplet
|
83 |
+
dataset:
|
84 |
+
name: danish embedding validator
|
85 |
+
type: danish_embedding_validator
|
86 |
+
metrics:
|
87 |
+
- type: cosine_accuracy
|
88 |
+
value: 0.9837473034858704
|
89 |
+
name: Cosine Accuracy
|
90 |
+
- type: cosine_accuracy
|
91 |
+
value: 0.9842851758003235
|
92 |
+
name: Cosine Accuracy
|
93 |
+
---
|
94 |
+
|
95 |
+
# SentenceTransformer based on intfloat/multilingual-e5-base
|
96 |
+
|
97 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
98 |
+
|
99 |
+
## Model Details
|
100 |
+
|
101 |
+
### Model Description
|
102 |
+
- **Model Type:** Sentence Transformer
|
103 |
+
- **Base model:** [intfloat/multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) <!-- at revision d13f1b27baf31030b7fd040960d60d909913633f -->
|
104 |
+
- **Maximum Sequence Length:** 512 tokens
|
105 |
+
- **Output Dimensionality:** 768 dimensions
|
106 |
+
- **Similarity Function:** Cosine Similarity
|
107 |
+
- **Training Dataset:**
|
108 |
+
- json
|
109 |
+
<!-- - **Language:** Unknown -->
|
110 |
+
<!-- - **License:** Unknown -->
|
111 |
+
|
112 |
+
### Model Sources
|
113 |
+
|
114 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
115 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
116 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
117 |
+
|
118 |
+
### Full Model Architecture
|
119 |
+
|
120 |
+
```
|
121 |
+
SentenceTransformer(
|
122 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
123 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
124 |
+
(2): Normalize()
|
125 |
+
)
|
126 |
+
```
|
127 |
+
|
128 |
+
## Usage
|
129 |
+
|
130 |
+
### Direct Usage (Sentence Transformers)
|
131 |
+
|
132 |
+
First install the Sentence Transformers library:
|
133 |
+
|
134 |
+
```bash
|
135 |
+
pip install -U sentence-transformers
|
136 |
+
```
|
137 |
+
|
138 |
+
Then you can load this model and run inference.
|
139 |
+
```python
|
140 |
+
from sentence_transformers import SentenceTransformer
|
141 |
+
|
142 |
+
# Download from the 🤗 Hub
|
143 |
+
model = SentenceTransformer("dilovancelik/multilingual-e5-large-danish-speeches-finetune")
|
144 |
+
# Run inference
|
145 |
+
sentences = [
|
146 |
+
'Bygge- og anlægsvirksomhed',
|
147 |
+
'Den betydelige forringelse i balancen udadtil hænger sammen med tre forhold: den stærke stigning i befolkningens forbrug, den stærke stigning i den samlede bygge- og anlægsvirksomhed og stigningen i den øvrige investering.',
|
148 |
+
'Venligst',
|
149 |
+
]
|
150 |
+
embeddings = model.encode(sentences)
|
151 |
+
print(embeddings.shape)
|
152 |
+
# [3, 768]
|
153 |
+
|
154 |
+
# Get the similarity scores for the embeddings
|
155 |
+
similarities = model.similarity(embeddings, embeddings)
|
156 |
+
print(similarities.shape)
|
157 |
+
# [3, 3]
|
158 |
+
```
|
159 |
+
|
160 |
+
<!--
|
161 |
+
### Direct Usage (Transformers)
|
162 |
+
|
163 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
164 |
+
|
165 |
+
</details>
|
166 |
+
-->
|
167 |
+
|
168 |
+
<!--
|
169 |
+
### Downstream Usage (Sentence Transformers)
|
170 |
+
|
171 |
+
You can finetune this model on your own dataset.
|
172 |
+
|
173 |
+
<details><summary>Click to expand</summary>
|
174 |
+
|
175 |
+
</details>
|
176 |
+
-->
|
177 |
+
|
178 |
+
<!--
|
179 |
+
### Out-of-Scope Use
|
180 |
+
|
181 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
182 |
+
-->
|
183 |
+
|
184 |
+
## Evaluation
|
185 |
+
|
186 |
+
### Metrics
|
187 |
+
|
188 |
+
#### Triplet
|
189 |
+
|
190 |
+
* Dataset: `danish_embedding_validator`
|
191 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
192 |
+
|
193 |
+
| Metric | Value |
|
194 |
+
|:--------------------|:-----------|
|
195 |
+
| **cosine_accuracy** | **0.9837** |
|
196 |
+
|
197 |
+
#### Triplet
|
198 |
+
|
199 |
+
* Dataset: `danish_embedding_validator`
|
200 |
+
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
|
201 |
+
|
202 |
+
| Metric | Value |
|
203 |
+
|:--------------------|:-----------|
|
204 |
+
| **cosine_accuracy** | **0.9843** |
|
205 |
+
|
206 |
+
<!--
|
207 |
+
## Bias, Risks and Limitations
|
208 |
+
|
209 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
210 |
+
-->
|
211 |
+
|
212 |
+
<!--
|
213 |
+
### Recommendations
|
214 |
+
|
215 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
216 |
+
-->
|
217 |
+
|
218 |
+
## Training Details
|
219 |
+
|
220 |
+
### Training Dataset
|
221 |
+
|
222 |
+
#### json
|
223 |
+
|
224 |
+
* Dataset: json
|
225 |
+
* Size: 48,914 training samples
|
226 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
227 |
+
* Approximate statistics based on the first 1000 samples:
|
228 |
+
| | anchor | positive | negative |
|
229 |
+
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
230 |
+
| type | string | string | string |
|
231 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 4.28 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 50.09 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 54.62 tokens</li><li>max: 512 tokens</li></ul> |
|
232 |
+
* Samples:
|
233 |
+
| anchor | positive | negative |
|
234 |
+
|:--------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
235 |
+
| <code>Integration</code> | <code>Indvandrerproblemet i Danmark består i, at vi her i landet gør indvandrerne til sociale klienter. Det er rasende kostbart. Det er også helt perspektivløst. Og dertil kommer, at det er demoraliserende, fordi det er tegn på en manglende respekt.</code> | <code>ingen</code> |
|
236 |
+
| <code>Prisuddeling</code> | <code>Det musik vi laver, det laver vi, fordi at det udtrykker det, der er inde i os, og det kan godt være, at vi er underlige, men vi er glade for, at der er rigtig mange mennesker derude, der også er underlige, og som har taget sig tid til at stemme på os, tusind tak for det.</code> | <code>Det begyndte alt sammen for 175 år siden her tæt, hvor vi står, med rejsningen af Den Skandinaviske Sten i 1845.</code> |
|
237 |
+
| <code>Friskoler</code> | <code>Vi har ladet tusind blomster blomstre – vi har massevis af pædagoger, hjemmehjælpere og lærere, som vil være selvstændige og starte fri-børnehaver, friskoler og friplejehjem.</code> | <code>Greenland Ruby A/S, som åbnede minen i Aappilattoq ved Qeqertarsuatsiaat sidste år er på nuværende tidspunkt det eneste selskab, der driver aktiv mine i Grønland.</code> |
|
238 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
239 |
+
```json
|
240 |
+
{
|
241 |
+
"scale": 20.0,
|
242 |
+
"similarity_fct": "cos_sim"
|
243 |
+
}
|
244 |
+
```
|
245 |
+
|
246 |
+
### Evaluation Dataset
|
247 |
+
|
248 |
+
#### json
|
249 |
+
|
250 |
+
* Dataset: json
|
251 |
+
* Size: 48,914 evaluation samples
|
252 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
253 |
+
* Approximate statistics based on the first 1000 samples:
|
254 |
+
| | anchor | positive | negative |
|
255 |
+
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
256 |
+
| type | string | string | string |
|
257 |
+
| details | <ul><li>min: 3 tokens</li><li>mean: 4.39 tokens</li><li>max: 18 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 52.42 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 55.2 tokens</li><li>max: 512 tokens</li></ul> |
|
258 |
+
* Samples:
|
259 |
+
| anchor | positive | negative |
|
260 |
+
|:---------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
261 |
+
| <code>Koncert</code> | <code>og fik virkelig trukket de fleste af dem med. ”</code> | <code>Det er regeringens mål at stabilisere udviklingen i byggeriet på et højt niveau og at fortsætte den sociale linje i boligpolitikken.</code> |
|
262 |
+
| <code>Ukraine</code> | <code>Vores hjælp gør også Ukraine attraktivt for udenlandske investorer og samarbejdspartnere den dag, krigens trængsler er forbi. Internationale virksomheder holder sig ofte tilbage med at anbringe penge i lande, hvor forholdene ikke er i orden. Eller hvor der er penge under bordet.</code> | <code>Og den lovbestemte mindsteløn i Tyskland er i dag på 9 Euro.</code> |
|
263 |
+
| <code>Aftale</code> | <code>Når ens kæreste ikke møder op til en aftale, er man</code> | <code>Det Jødiske Samfund har oplyst, at de i perioden 7. oktober til 7. november i år har modtaget 80 indberetninger om antisemitiske hændelser. Det er 24 gange flere indberetninger end gennemsnittet pr. måned i de forudgående ni måneder af 2023.</code> |
|
264 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
265 |
+
```json
|
266 |
+
{
|
267 |
+
"scale": 20.0,
|
268 |
+
"similarity_fct": "cos_sim"
|
269 |
+
}
|
270 |
+
```
|
271 |
+
|
272 |
+
### Training Hyperparameters
|
273 |
+
#### Non-Default Hyperparameters
|
274 |
+
|
275 |
+
- `eval_strategy`: steps
|
276 |
+
- `per_device_train_batch_size`: 64
|
277 |
+
- `per_device_eval_batch_size`: 64
|
278 |
+
- `learning_rate`: 2e-05
|
279 |
+
- `weight_decay`: 0.1
|
280 |
+
- `num_train_epochs`: 2
|
281 |
+
- `warmup_ratio`: 0.1
|
282 |
+
- `batch_sampler`: no_duplicates
|
283 |
+
|
284 |
+
#### All Hyperparameters
|
285 |
+
<details><summary>Click to expand</summary>
|
286 |
+
|
287 |
+
- `overwrite_output_dir`: False
|
288 |
+
- `do_predict`: False
|
289 |
+
- `eval_strategy`: steps
|
290 |
+
- `prediction_loss_only`: True
|
291 |
+
- `per_device_train_batch_size`: 64
|
292 |
+
- `per_device_eval_batch_size`: 64
|
293 |
+
- `per_gpu_train_batch_size`: None
|
294 |
+
- `per_gpu_eval_batch_size`: None
|
295 |
+
- `gradient_accumulation_steps`: 1
|
296 |
+
- `eval_accumulation_steps`: None
|
297 |
+
- `torch_empty_cache_steps`: None
|
298 |
+
- `learning_rate`: 2e-05
|
299 |
+
- `weight_decay`: 0.1
|
300 |
+
- `adam_beta1`: 0.9
|
301 |
+
- `adam_beta2`: 0.999
|
302 |
+
- `adam_epsilon`: 1e-08
|
303 |
+
- `max_grad_norm`: 1.0
|
304 |
+
- `num_train_epochs`: 2
|
305 |
+
- `max_steps`: -1
|
306 |
+
- `lr_scheduler_type`: linear
|
307 |
+
- `lr_scheduler_kwargs`: {}
|
308 |
+
- `warmup_ratio`: 0.1
|
309 |
+
- `warmup_steps`: 0
|
310 |
+
- `log_level`: passive
|
311 |
+
- `log_level_replica`: warning
|
312 |
+
- `log_on_each_node`: True
|
313 |
+
- `logging_nan_inf_filter`: True
|
314 |
+
- `save_safetensors`: True
|
315 |
+
- `save_on_each_node`: False
|
316 |
+
- `save_only_model`: False
|
317 |
+
- `restore_callback_states_from_checkpoint`: False
|
318 |
+
- `no_cuda`: False
|
319 |
+
- `use_cpu`: False
|
320 |
+
- `use_mps_device`: False
|
321 |
+
- `seed`: 42
|
322 |
+
- `data_seed`: None
|
323 |
+
- `jit_mode_eval`: False
|
324 |
+
- `use_ipex`: False
|
325 |
+
- `bf16`: False
|
326 |
+
- `fp16`: False
|
327 |
+
- `fp16_opt_level`: O1
|
328 |
+
- `half_precision_backend`: auto
|
329 |
+
- `bf16_full_eval`: False
|
330 |
+
- `fp16_full_eval`: False
|
331 |
+
- `tf32`: None
|
332 |
+
- `local_rank`: 0
|
333 |
+
- `ddp_backend`: None
|
334 |
+
- `tpu_num_cores`: None
|
335 |
+
- `tpu_metrics_debug`: False
|
336 |
+
- `debug`: []
|
337 |
+
- `dataloader_drop_last`: False
|
338 |
+
- `dataloader_num_workers`: 0
|
339 |
+
- `dataloader_prefetch_factor`: None
|
340 |
+
- `past_index`: -1
|
341 |
+
- `disable_tqdm`: False
|
342 |
+
- `remove_unused_columns`: True
|
343 |
+
- `label_names`: None
|
344 |
+
- `load_best_model_at_end`: False
|
345 |
+
- `ignore_data_skip`: False
|
346 |
+
- `fsdp`: []
|
347 |
+
- `fsdp_min_num_params`: 0
|
348 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
349 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
350 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
351 |
+
- `deepspeed`: None
|
352 |
+
- `label_smoothing_factor`: 0.0
|
353 |
+
- `optim`: adamw_torch
|
354 |
+
- `optim_args`: None
|
355 |
+
- `adafactor`: False
|
356 |
+
- `group_by_length`: False
|
357 |
+
- `length_column_name`: length
|
358 |
+
- `ddp_find_unused_parameters`: None
|
359 |
+
- `ddp_bucket_cap_mb`: None
|
360 |
+
- `ddp_broadcast_buffers`: False
|
361 |
+
- `dataloader_pin_memory`: True
|
362 |
+
- `dataloader_persistent_workers`: False
|
363 |
+
- `skip_memory_metrics`: True
|
364 |
+
- `use_legacy_prediction_loop`: False
|
365 |
+
- `push_to_hub`: False
|
366 |
+
- `resume_from_checkpoint`: None
|
367 |
+
- `hub_model_id`: None
|
368 |
+
- `hub_strategy`: every_save
|
369 |
+
- `hub_private_repo`: None
|
370 |
+
- `hub_always_push`: False
|
371 |
+
- `gradient_checkpointing`: False
|
372 |
+
- `gradient_checkpointing_kwargs`: None
|
373 |
+
- `include_inputs_for_metrics`: False
|
374 |
+
- `include_for_metrics`: []
|
375 |
+
- `eval_do_concat_batches`: True
|
376 |
+
- `fp16_backend`: auto
|
377 |
+
- `push_to_hub_model_id`: None
|
378 |
+
- `push_to_hub_organization`: None
|
379 |
+
- `mp_parameters`:
|
380 |
+
- `auto_find_batch_size`: False
|
381 |
+
- `full_determinism`: False
|
382 |
+
- `torchdynamo`: None
|
383 |
+
- `ray_scope`: last
|
384 |
+
- `ddp_timeout`: 1800
|
385 |
+
- `torch_compile`: False
|
386 |
+
- `torch_compile_backend`: None
|
387 |
+
- `torch_compile_mode`: None
|
388 |
+
- `dispatch_batches`: None
|
389 |
+
- `split_batches`: None
|
390 |
+
- `include_tokens_per_second`: False
|
391 |
+
- `include_num_input_tokens_seen`: False
|
392 |
+
- `neftune_noise_alpha`: None
|
393 |
+
- `optim_target_modules`: None
|
394 |
+
- `batch_eval_metrics`: False
|
395 |
+
- `eval_on_start`: False
|
396 |
+
- `use_liger_kernel`: False
|
397 |
+
- `eval_use_gather_object`: False
|
398 |
+
- `average_tokens_across_devices`: False
|
399 |
+
- `prompts`: None
|
400 |
+
- `batch_sampler`: no_duplicates
|
401 |
+
- `multi_dataset_batch_sampler`: proportional
|
402 |
+
|
403 |
+
</details>
|
404 |
+
|
405 |
+
### Training Logs
|
406 |
+
| Epoch | Step | Training Loss | Validation Loss | danish_embedding_validator_cosine_accuracy |
|
407 |
+
|:------:|:----:|:-------------:|:---------------:|:------------------------------------------:|
|
408 |
+
| -1 | -1 | - | - | 0.8181 |
|
409 |
+
| 0.4082 | 200 | 3.0213 | 0.8728 | 0.9777 |
|
410 |
+
| 0.8163 | 400 | 2.4277 | 0.8451 | 0.9809 |
|
411 |
+
| 1.2224 | 600 | 2.0946 | 0.8268 | 0.9817 |
|
412 |
+
| 1.6306 | 800 | 2.0572 | 0.8143 | 0.9840 |
|
413 |
+
| -1 | -1 | - | - | 0.9843 |
|
414 |
+
|
415 |
+
|
416 |
+
### Framework Versions
|
417 |
+
- Python: 3.10.12
|
418 |
+
- Sentence Transformers: 3.4.1
|
419 |
+
- Transformers: 4.48.3
|
420 |
+
- PyTorch: 2.5.1
|
421 |
+
- Accelerate: 1.3.0
|
422 |
+
- Datasets: 3.3.0
|
423 |
+
- Tokenizers: 0.21.0
|
424 |
+
|
425 |
+
## Citation
|
426 |
+
|
427 |
+
### BibTeX
|
428 |
+
|
429 |
+
#### Sentence Transformers
|
430 |
+
```bibtex
|
431 |
+
@inproceedings{reimers-2019-sentence-bert,
|
432 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
433 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
434 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
435 |
+
month = "11",
|
436 |
+
year = "2019",
|
437 |
+
publisher = "Association for Computational Linguistics",
|
438 |
+
url = "https://arxiv.org/abs/1908.10084",
|
439 |
+
}
|
440 |
+
```
|
441 |
+
|
442 |
+
#### MultipleNegativesRankingLoss
|
443 |
+
```bibtex
|
444 |
+
@misc{henderson2017efficient,
|
445 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
446 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
447 |
+
year={2017},
|
448 |
+
eprint={1705.00652},
|
449 |
+
archivePrefix={arXiv},
|
450 |
+
primaryClass={cs.CL}
|
451 |
+
}
|
452 |
+
```
|
453 |
+
|
454 |
+
<!--
|
455 |
+
## Glossary
|
456 |
+
|
457 |
+
*Clearly define terms in order to be accessible across audiences.*
|
458 |
+
-->
|
459 |
+
|
460 |
+
<!--
|
461 |
+
## Model Card Authors
|
462 |
+
|
463 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
464 |
+
-->
|
465 |
+
|
466 |
+
<!--
|
467 |
+
## Model Card Contact
|
468 |
+
|
469 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
470 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "intfloat/multilingual-e5-base",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 768,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 3072,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.48.3",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.4.1",
|
4 |
+
"transformers": "4.48.3",
|
5 |
+
"pytorch": "2.5.1"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d35a9bbdd0a34396b08d9d5d425f25fd8e98fcd9b5f2557ae5093e4ba4f0bbc
|
3 |
+
size 1112197096
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
3 |
+
size 17082987
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "<mask>",
|
50 |
+
"model_max_length": 512,
|
51 |
+
"pad_token": "<pad>",
|
52 |
+
"sep_token": "</s>",
|
53 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
54 |
+
"unk_token": "<unk>"
|
55 |
+
}
|