Commit
•
d47368d
1
Parent(s):
2bfe928
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,558 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- audio
|
6 |
+
- automatic-speech-recognition
|
7 |
+
widget:
|
8 |
+
- example_title: LibriSpeech sample 1
|
9 |
+
src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
|
10 |
+
- example_title: LibriSpeech sample 2
|
11 |
+
src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
|
12 |
+
pipeline_tag: automatic-speech-recognition
|
13 |
+
license: mit
|
14 |
+
library_name: transformers
|
15 |
+
---
|
16 |
+
|
17 |
+
# Distil-Whisper: distil-small.en
|
18 |
+
|
19 |
+
Distil-Whisper was proposed in the paper [Robust Knowledge Distillation via Large-Scale Pseudo Labelling](https://arxiv.org/abs/2311.00430).
|
20 |
+
It is a distilled version of the Whisper model that is **6 times faster**, 49% smaller, and performs **within 1% WER**
|
21 |
+
on out-of-distribution evaluation sets.
|
22 |
+
|
23 |
+
This is the repository for distil-small.en, a distilled variant of [Whisper small.en](https://huggingface.co/openai/whisper-small.en).
|
24 |
+
It is the **smallest Distil-Whisper checkpoint**, with just 166M parameters, making it the ideal choice for memory
|
25 |
+
constrained applications (e.g. on-device).
|
26 |
+
|
27 |
+
For most other applications, the [distil-medium.en](https://huggingface.co/distil-whisper/distil-medium.en)
|
28 |
+
or [distil-large-v2](https://huggingface.co/distil-whisper/distil-large-v2) checkpoints are recommended, since they are
|
29 |
+
both faster and achieve better WER results:
|
30 |
+
|
31 |
+
| Model | Params / M | Rel. Latency | Short-Form WER | Long-Form WER |
|
32 |
+
|----------------------------------------------------------------------------|------------|--------------|----------------|---------------|
|
33 |
+
| [large-v2](https://huggingface.co/openai/whisper-large-v2) | 1550 | 1.0 | **9.1** | 11.7 |
|
34 |
+
| | | | | |
|
35 |
+
| [distil-large-v2](https://huggingface.co/distil-whisper/distil-large-v2) | 756 | 5.8 | 10.1 | **11.6** |
|
36 |
+
| [distil-medium.en](https://huggingface.co/distil-whisper/distil-medium.en) | 394 | **6.8** | 11.1 | 12.4 |
|
37 |
+
| [distil-small.en](https://huggingface.co/distil-whisper/distil-small.en) | **166** | 5.6 | 12.1 | 12.8 |
|
38 |
+
|
39 |
+
**Note:** Distil-Whisper is currently only available for English speech recognition. We are working with the community
|
40 |
+
to distill Whisper on other languages. If you are interested in distilling Whisper in your language, check out the
|
41 |
+
provided [training code](https://github.com/huggingface/distil-whisper/tree/main/training). We will update the
|
42 |
+
[Distil-Whisper repository](https://github.com/huggingface/distil-whisper/) with multilingual checkpoints when ready!
|
43 |
+
|
44 |
+
### Why is `distil-small.en` slower than `distil-large-v2`?
|
45 |
+
|
46 |
+
While [distil-medium.en](https://huggingface.co/distil-whisper/distil-medium.en) and [distil-large-v2](https://huggingface.co/distil-whisper/distil-large-v2)
|
47 |
+
use two decoder layers each, distil-small.en uses four. Using more decoder layers improves the WER performance of the
|
48 |
+
model, at the expense of slower inference speed. We found that four layers was the minimum required to get reasonable
|
49 |
+
WER performance for `distil-small.en`, where it performs to within 3% WER of Whisper [large-v2](https://huggingface.co/openai/whisper-large-v2)
|
50 |
+
while being 5.6x faster. When we tried distilling with just two layers, the model was over 5% worse than large-v2, albeit
|
51 |
+
7.8x faster. We leave distilling a two layer small.en model as future works.
|
52 |
+
|
53 |
+
## Usage
|
54 |
+
|
55 |
+
Distil-Whisper is supported in Hugging Face 🤗 Transformers from version 4.35 onwards. To run the model, first
|
56 |
+
install the latest version of the Transformers library. For this example, we'll also install 🤗 Datasets to load toy
|
57 |
+
audio dataset from the Hugging Face Hub:
|
58 |
+
|
59 |
+
```bash
|
60 |
+
pip install --upgrade pip
|
61 |
+
pip install --upgrade transformers accelerate datasets[audio]
|
62 |
+
```
|
63 |
+
|
64 |
+
### Short-Form Transcription
|
65 |
+
|
66 |
+
The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
67 |
+
class to transcribe short-form audio files (< 30-seconds) as follows:
|
68 |
+
|
69 |
+
```python
|
70 |
+
import torch
|
71 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
72 |
+
from datasets import load_dataset
|
73 |
+
|
74 |
+
|
75 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
76 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
77 |
+
|
78 |
+
model_id = "distil-whisper/distil-small.en"
|
79 |
+
|
80 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
81 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
82 |
+
)
|
83 |
+
model.to(device)
|
84 |
+
|
85 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
86 |
+
|
87 |
+
pipe = pipeline(
|
88 |
+
"automatic-speech-recognition",
|
89 |
+
model=model,
|
90 |
+
tokenizer=processor.tokenizer,
|
91 |
+
feature_extractor=processor.feature_extractor,
|
92 |
+
max_new_tokens=128,
|
93 |
+
torch_dtype=torch_dtype,
|
94 |
+
device=device,
|
95 |
+
)
|
96 |
+
|
97 |
+
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
98 |
+
sample = dataset[0]["audio"]
|
99 |
+
|
100 |
+
result = pipe(sample)
|
101 |
+
print(result["text"])
|
102 |
+
```
|
103 |
+
|
104 |
+
To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline:
|
105 |
+
```diff
|
106 |
+
- result = pipe(sample)
|
107 |
+
+ result = pipe("audio.mp3")
|
108 |
+
```
|
109 |
+
|
110 |
+
### Long-Form Transcription
|
111 |
+
|
112 |
+
Distil-Whisper uses a chunked algorithm to transcribe long-form audio files (> 30-seconds). In practice, this chunked long-form algorithm
|
113 |
+
is 9x faster than the sequential algorithm proposed by OpenAI in the Whisper paper (see Table 7 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430)).
|
114 |
+
|
115 |
+
To enable chunking, pass the `chunk_length_s` parameter to the `pipeline`. For Distil-Whisper, a chunk length of 15-seconds
|
116 |
+
is optimal. To activate batching, pass the argument `batch_size`:
|
117 |
+
|
118 |
+
```python
|
119 |
+
import torch
|
120 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
121 |
+
from datasets import load_dataset
|
122 |
+
|
123 |
+
|
124 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
125 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
126 |
+
|
127 |
+
model_id = "distil-whisper/distil-small.en"
|
128 |
+
|
129 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
130 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
131 |
+
)
|
132 |
+
model.to(device)
|
133 |
+
|
134 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
135 |
+
|
136 |
+
pipe = pipeline(
|
137 |
+
"automatic-speech-recognition",
|
138 |
+
model=model,
|
139 |
+
tokenizer=processor.tokenizer,
|
140 |
+
feature_extractor=processor.feature_extractor,
|
141 |
+
max_new_tokens=128,
|
142 |
+
chunk_length_s=15,
|
143 |
+
batch_size=16,
|
144 |
+
torch_dtype=torch_dtype,
|
145 |
+
device=device,
|
146 |
+
)
|
147 |
+
|
148 |
+
dataset = load_dataset("distil-whisper/librispeech_long", "default", split="validation")
|
149 |
+
sample = dataset[0]["audio"]
|
150 |
+
|
151 |
+
result = pipe(sample)
|
152 |
+
print(result["text"])
|
153 |
+
```
|
154 |
+
|
155 |
+
<!---
|
156 |
+
**Tip:** The pipeline can also be used to transcribe an audio file from a remote URL, for example:
|
157 |
+
|
158 |
+
```python
|
159 |
+
result = pipe("https://huggingface.co/datasets/sanchit-gandhi/librispeech_long/resolve/main/audio.wav")
|
160 |
+
```
|
161 |
+
--->
|
162 |
+
|
163 |
+
### Speculative Decoding
|
164 |
+
|
165 |
+
Distil-Whisper can be used as an assistant model to Whisper for speculative decoding. Speculative decoding mathematically
|
166 |
+
ensures the exact same outputs as Whisper are obtained while being 2 times faster. This makes it the perfect drop-in
|
167 |
+
replacement for existing Whisper pipelines, since the same outputs are guaranteed.
|
168 |
+
|
169 |
+
In the following code-snippet, we load the assistant Distil-Whisper model standalone to the main Whisper pipeline. We then
|
170 |
+
specify it as the "assistant model" for generation:
|
171 |
+
|
172 |
+
```python
|
173 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoModelForSpeechSeq2Seq, AutoProcessor
|
174 |
+
import torch
|
175 |
+
from datasets import load_dataset
|
176 |
+
|
177 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
178 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
179 |
+
|
180 |
+
assistant_model_id = "distil-whisper/distil-small.en"
|
181 |
+
|
182 |
+
assistant_model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
183 |
+
assistant_model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
184 |
+
)
|
185 |
+
assistant_model.to(device)
|
186 |
+
|
187 |
+
model_id = "openai/whisper-medium.en"
|
188 |
+
|
189 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
190 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
191 |
+
)
|
192 |
+
model.to(device)
|
193 |
+
|
194 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
195 |
+
|
196 |
+
pipe = pipeline(
|
197 |
+
"automatic-speech-recognition",
|
198 |
+
model=model,
|
199 |
+
tokenizer=processor.tokenizer,
|
200 |
+
feature_extractor=processor.feature_extractor,
|
201 |
+
max_new_tokens=128,
|
202 |
+
generate_kwargs={"assistant_model": assistant_model},
|
203 |
+
torch_dtype=torch_dtype,
|
204 |
+
device=device,
|
205 |
+
)
|
206 |
+
|
207 |
+
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
208 |
+
sample = dataset[0]["audio"]
|
209 |
+
|
210 |
+
result = pipe(sample)
|
211 |
+
print(result["text"])
|
212 |
+
```
|
213 |
+
|
214 |
+
## Additional Speed & Memory Improvements
|
215 |
+
|
216 |
+
You can apply additional speed and memory improvements to Distil-Whisper which we cover in the following.
|
217 |
+
|
218 |
+
### Flash Attention
|
219 |
+
|
220 |
+
We recommend using [Flash-Attention 2](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#flashattention-2) if your GPU allows for it.
|
221 |
+
To do so, you first need to install [Flash Attention](https://github.com/Dao-AILab/flash-attention):
|
222 |
+
|
223 |
+
```
|
224 |
+
pip install flash-attn --no-build-isolation
|
225 |
+
```
|
226 |
+
|
227 |
+
and then all you have to do is to pass `use_flash_attention_2=True` to `from_pretrained`:
|
228 |
+
|
229 |
+
```diff
|
230 |
+
- model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
|
231 |
+
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, use_flash_attention_2=True)
|
232 |
+
```
|
233 |
+
|
234 |
+
### Torch Scale-Product-Attention (SDPA)
|
235 |
+
|
236 |
+
If your GPU does not support Flash Attention, we recommend making use of [BetterTransformers](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#bettertransformer).
|
237 |
+
To do so, you first need to install optimum:
|
238 |
+
|
239 |
+
```
|
240 |
+
pip install --upgrade optimum
|
241 |
+
```
|
242 |
+
|
243 |
+
And then convert your model to a "BetterTransformer" model before using it:
|
244 |
+
|
245 |
+
```diff
|
246 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
|
247 |
+
+ model = model.to_bettertransformer()
|
248 |
+
```
|
249 |
+
|
250 |
+
### Running Distil-Whisper in `openai-whisper`
|
251 |
+
|
252 |
+
Coming soon!
|
253 |
+
|
254 |
+
<!---
|
255 |
+
|
256 |
+
To use the model in the original Whisper format, first ensure you have the [`openai-whisper`](https://pypi.org/project/openai-whisper/) package installed:
|
257 |
+
|
258 |
+
```bash
|
259 |
+
pip install --upgrade openai-whisper
|
260 |
+
```
|
261 |
+
|
262 |
+
The following code-snippet demonstrates how to transcribe a sample file from the LibriSpeech dataset loaded using
|
263 |
+
🤗 Datasets:
|
264 |
+
|
265 |
+
```python
|
266 |
+
import torch
|
267 |
+
from datasets import load_dataset
|
268 |
+
from huggingface_hub import hf_hub_download
|
269 |
+
from whisper import load_model, transcribe
|
270 |
+
|
271 |
+
medium_en = hf_hub_download(repo_id="distil-whisper/distil-small.en", filename="original-model.bin")
|
272 |
+
model = load_model(medium_en)
|
273 |
+
|
274 |
+
dataset = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
|
275 |
+
sample = dataset[0]["audio"]["array"]
|
276 |
+
sample = torch.from_numpy(sample).float()
|
277 |
+
|
278 |
+
pred_out = transcribe(model, audio=sample)
|
279 |
+
print(pred_out["text"])
|
280 |
+
```
|
281 |
+
|
282 |
+
To transcribe a local audio file, simply pass the path to the audio file as the `audio` argument to transcribe:
|
283 |
+
|
284 |
+
```python
|
285 |
+
pred_out = transcribe(model, audio="audio.mp3")
|
286 |
+
```
|
287 |
+
--->
|
288 |
+
|
289 |
+
### Whisper.cpp
|
290 |
+
|
291 |
+
Coming soon!
|
292 |
+
|
293 |
+
<!---
|
294 |
+
|
295 |
+
Distil-Whisper can be run from the [Whisper.cpp](https://github.com/ggerganov/whisper.cpp) repository with the original
|
296 |
+
sequential long-form transcription algorithm. In a [provisional benchmark](https://github.com/ggerganov/whisper.cpp/pull/1424#issuecomment-1793513399)
|
297 |
+
on Mac M1, `distil-medium.en` is 4x faster than `large-v2`, while performing to within 1% WER over long-form audio.
|
298 |
+
|
299 |
+
Steps for getting started:
|
300 |
+
1. Clone the Whisper.cpp repository:
|
301 |
+
```
|
302 |
+
git clone https://github.com/ggerganov/whisper.cpp.git
|
303 |
+
cd whisper.cpp
|
304 |
+
```
|
305 |
+
2. Download the ggml weights for `distil-small.en` from the Hugging Face Hub:
|
306 |
+
|
307 |
+
```bash
|
308 |
+
python -c "from huggingface_hub import hf_hub_download; hf_hub_download(repo_id='distil-whisper/distil-small.en', filename='ggml-medium-32-2.en.bin', local_dir='./models')"
|
309 |
+
```
|
310 |
+
|
311 |
+
Note that if you do not have the `huggingface_hub` package installed, you can also download the weights with `wget`:
|
312 |
+
|
313 |
+
```bash
|
314 |
+
wget https://huggingface.co/distil-whisper/distil-small.en/resolve/main/ggml-medium-32-2.en.bin -P ./models
|
315 |
+
```
|
316 |
+
|
317 |
+
3. Run inference using the provided sample audio:
|
318 |
+
|
319 |
+
```bash
|
320 |
+
make -j && ./main -m models/ggml-medium-32-2.en.bin -f samples/jfk.wav
|
321 |
+
```
|
322 |
+
|
323 |
+
--->
|
324 |
+
|
325 |
+
### Transformers.js
|
326 |
+
|
327 |
+
```js
|
328 |
+
import { pipeline } from '@xenova/transformers';
|
329 |
+
|
330 |
+
let transcriber = await pipeline('automatic-speech-recognition', 'distil-whisper/distil-small.en');
|
331 |
+
|
332 |
+
let url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav';
|
333 |
+
let output = await transcriber(url);
|
334 |
+
// { text: " And so my fellow Americans, ask not what your country can do for you. Ask what you can do for your country." }
|
335 |
+
```
|
336 |
+
|
337 |
+
See the [docs](https://huggingface.co/docs/transformers.js/api/pipelines#module_pipelines.AutomaticSpeechRecognitionPipeline) for more information.
|
338 |
+
|
339 |
+
### Candle
|
340 |
+
|
341 |
+
Coming soon!
|
342 |
+
|
343 |
+
<!---
|
344 |
+
|
345 |
+
Through an integration with Hugging Face [Candle](https://github.com/huggingface/candle/tree/main) 🕯️, Distil-Whisper is
|
346 |
+
now available in the Rust library 🦀
|
347 |
+
|
348 |
+
Benefit from:
|
349 |
+
* Optimised CPU backend with optional MKL support for x86 and Accelerate for Macs
|
350 |
+
* CUDA backend for efficiently running on GPUs, multiple GPU distribution via NCCL
|
351 |
+
* WASM support: run Distil-Whisper in a browser
|
352 |
+
|
353 |
+
Steps for getting started:
|
354 |
+
1. Install [`candle-core`](https://github.com/huggingface/candle/tree/main/candle-core) as explained [here](https://huggingface.github.io/candle/guide/installation.html)
|
355 |
+
2. Clone the `candle` repository locally:
|
356 |
+
```
|
357 |
+
git clone https://github.com/huggingface/candle.git
|
358 |
+
```
|
359 |
+
3. Enter the example directory for [Whisper](https://github.com/huggingface/candle/tree/main/candle-examples/examples/whisper):
|
360 |
+
```
|
361 |
+
cd candle/candle-examples/examples/whisper
|
362 |
+
```
|
363 |
+
4. Run an example:
|
364 |
+
```
|
365 |
+
cargo run --example whisper --release -- --model distil-small.en
|
366 |
+
```
|
367 |
+
5. To specify your own audio file, add the `--input` flag:
|
368 |
+
```
|
369 |
+
cargo run --example whisper --release -- --model distil-small.en --input audio.wav
|
370 |
+
```
|
371 |
+
|
372 |
+
--->
|
373 |
+
|
374 |
+
### 8bit & 4bit Quantization
|
375 |
+
|
376 |
+
Coming soon!
|
377 |
+
|
378 |
+
## Model Details
|
379 |
+
|
380 |
+
Distil-Whisper inherits the encoder-decoder architecture from Whisper. The encoder maps a sequence of speech vector
|
381 |
+
inputs to a sequence of hidden-state vectors. The decoder auto-regressively predicts text tokens, conditional on all
|
382 |
+
previous tokens and the encoder hidden-states. Consequently, the encoder is only run forward once, whereas the decoder
|
383 |
+
is run as many times as the number of tokens generated. In practice, this means the decoder accounts for over 90% of
|
384 |
+
total inference time. Thus, to optimise for latency, the focus is on minimising the inference time of the decoder.
|
385 |
+
|
386 |
+
To distill the Whisper model, we reduce the number of decoder layers while keeping the encoder fixed.
|
387 |
+
The encoder (shown in green) is entirely copied from the teacher to the student and frozen during training.
|
388 |
+
The student's decoder consists of a subset of the teacher decoder layers, which are intialised from maximally spaced layers.
|
389 |
+
The model is then trained on a weighted sum of the KL divergence and pseudo-label loss terms.
|
390 |
+
|
391 |
+
<p align="center">
|
392 |
+
<img src="https://huggingface.co/datasets/distil-whisper/figures/resolve/main/architecture.png?raw=true" width="600"/>
|
393 |
+
</p>
|
394 |
+
|
395 |
+
## Evaluation
|
396 |
+
|
397 |
+
The following code-snippets demonstrates how to evaluate the Distil-Whisper model on the LibriSpeech validation.clean
|
398 |
+
dataset with [streaming mode](https://huggingface.co/blog/audio-datasets#streaming-mode-the-silver-bullet), meaning no
|
399 |
+
audio data has to be downloaded to your local device.
|
400 |
+
|
401 |
+
First, we need to install the required packages, including 🤗 Datasets to stream and load the audio data, and 🤗 Evaluate to
|
402 |
+
perform the WER calculation:
|
403 |
+
|
404 |
+
```bash
|
405 |
+
pip install --upgrade pip
|
406 |
+
pip install --upgrade transformers datasets[audio] evaluate jiwer
|
407 |
+
```
|
408 |
+
|
409 |
+
Evaluation can then be run end-to-end with the following example:
|
410 |
+
|
411 |
+
```python
|
412 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
|
413 |
+
from transformers.models.whisper.english_normalizer import EnglishTextNormalizer
|
414 |
+
from datasets import load_dataset
|
415 |
+
from evaluate import load
|
416 |
+
import torch
|
417 |
+
from tqdm import tqdm
|
418 |
+
|
419 |
+
# define our torch configuration
|
420 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
421 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
422 |
+
|
423 |
+
model_id = "distil-whisper/distil-small.en"
|
424 |
+
|
425 |
+
# load the model + processor
|
426 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, use_safetensors=True, low_cpu_mem_usage=True)
|
427 |
+
model = model.to(device)
|
428 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
429 |
+
|
430 |
+
# load the dataset with streaming mode
|
431 |
+
dataset = load_dataset("librispeech_asr", "clean", split="validation", streaming=True)
|
432 |
+
|
433 |
+
# define the evaluation metric
|
434 |
+
wer_metric = load("wer")
|
435 |
+
normalizer = EnglishTextNormalizer(processor.tokenizer.english_spelling_normalizer)
|
436 |
+
|
437 |
+
def inference(batch):
|
438 |
+
# 1. Pre-process the audio data to log-mel spectrogram inputs
|
439 |
+
audio = [sample["array"] for sample in batch["audio"]]
|
440 |
+
input_features = processor(audio, sampling_rate=batch["audio"][0]["sampling_rate"], return_tensors="pt").input_features
|
441 |
+
input_features = input_features.to(device, dtype=torch_dtype)
|
442 |
+
|
443 |
+
# 2. Auto-regressively generate the predicted token ids
|
444 |
+
pred_ids = model.generate(input_features, max_new_tokens=128)
|
445 |
+
|
446 |
+
# 3. Decode the token ids to the final transcription
|
447 |
+
batch["transcription"] = processor.batch_decode(pred_ids, skip_special_tokens=True)
|
448 |
+
batch["reference"] = batch["text"]
|
449 |
+
return batch
|
450 |
+
|
451 |
+
dataset = dataset.map(function=inference, batched=True, batch_size=16)
|
452 |
+
|
453 |
+
all_transcriptions = []
|
454 |
+
all_references = []
|
455 |
+
|
456 |
+
# iterate over the dataset and run inference
|
457 |
+
for i, result in tqdm(enumerate(dataset), desc="Evaluating..."):
|
458 |
+
all_transcriptions.append(result["transcription"])
|
459 |
+
all_references.append(result["reference"])
|
460 |
+
|
461 |
+
# normalize predictions and references
|
462 |
+
all_transcriptions = [normalizer(transcription) for transcription in all_transcriptions]
|
463 |
+
all_references = [normalizer(reference) for reference in all_references]
|
464 |
+
|
465 |
+
# compute the WER metric
|
466 |
+
wer = 100 * wer_metric.compute(predictions=all_transcriptions, references=all_references)
|
467 |
+
print(wer)
|
468 |
+
|
469 |
+
```
|
470 |
+
**Print Output:**
|
471 |
+
```
|
472 |
+
3.4326070294536297
|
473 |
+
```
|
474 |
+
|
475 |
+
## Intended Use
|
476 |
+
|
477 |
+
Distil-Whisper is intended to be a drop-in replacement for Whisper on English speech recognition. In particular, it
|
478 |
+
achieves comparable WER results over out-of-distribution test data, while being 6x faster over both short and long-form
|
479 |
+
audio.
|
480 |
+
|
481 |
+
## Data
|
482 |
+
|
483 |
+
Distil-Whisper is trained on 22,000 hours of audio data from 9 open-source, permissively licensed speech datasets on the
|
484 |
+
Hugging Face Hub:
|
485 |
+
|
486 |
+
| Dataset | Size / h | Speakers | Domain | Licence |
|
487 |
+
|-----------------------------------------------------------------------------------------|----------|----------|-----------------------------|-----------------|
|
488 |
+
| [People's Speech](https://huggingface.co/datasets/MLCommons/peoples_speech) | 12,000 | unknown | Internet Archive | CC-BY-SA-4.0 |
|
489 |
+
| [Common Voice 13](https://huggingface.co/datasets/mozilla-foundation/common_voice_13_0) | 3,000 | unknown | Narrated Wikipedia | CC0-1.0 |
|
490 |
+
| [GigaSpeech](https://huggingface.co/datasets/speechcolab/gigaspeech) | 2,500 | unknown | Audiobook, podcast, YouTube | apache-2.0 |
|
491 |
+
| Fisher | 1,960 | 11,900 | Telephone conversations | LDC |
|
492 |
+
| [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) | 960 | 2,480 | Audiobooks | CC-BY-4.0 |
|
493 |
+
| [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) | 540 | 1,310 | European Parliament | CC0 |
|
494 |
+
| [TED-LIUM](https://huggingface.co/datasets/LIUM/tedlium) | 450 | 2,030 | TED talks | CC-BY-NC-ND 3.0 |
|
495 |
+
| SwitchBoard | 260 | 540 | Telephone conversations | LDC |
|
496 |
+
| [AMI](https://huggingface.co/datasets/edinburghcstr/ami) | 100 | unknown | Meetings | CC-BY-4.0 |
|
497 |
+
||||||
|
498 |
+
| **Total** | 21,770 | 18,260+ | | |
|
499 |
+
|
500 |
+
The combined dataset spans 10 distinct domains and over 50k speakers. The diversity of this dataset is crucial to ensuring
|
501 |
+
the distilled model is robust to audio distributions and noise.
|
502 |
+
|
503 |
+
The audio data is then pseudo-labelled using the Whisper large-v2 model: we use Whisper to generate predictions for all
|
504 |
+
the audio in our training set and use these as the target labels during training. Using pseudo-labels ensures that the
|
505 |
+
transcriptions are consistently formatted across datasets and provides sequence-level distillation signal during training.
|
506 |
+
|
507 |
+
## WER Filter
|
508 |
+
|
509 |
+
The Whisper pseudo-label predictions are subject to mis-transcriptions and hallucinations. To ensure we only train on
|
510 |
+
accurate pseudo-labels, we employ a simple WER heuristic during training. First, we normalise the Whisper pseudo-labels
|
511 |
+
and the ground truth labels provided by each dataset. We then compute the WER between these labels. If the WER exceeds
|
512 |
+
a specified threshold, we discard the training example. Otherwise, we keep it for training.
|
513 |
+
|
514 |
+
Section 9.2 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430) demonstrates the effectiveness of this filter for improving downstream performance
|
515 |
+
of the distilled model. We also partially attribute Distil-Whisper's robustness to hallucinations to this filter.
|
516 |
+
|
517 |
+
## Training
|
518 |
+
|
519 |
+
The model was trained for 50,000 optimisation steps (or 12 epochs) with batch size 2056. The Tensorboard training logs can
|
520 |
+
be found under: https://huggingface.co/distil-whisper/distil-small.en/tensorboard?params=scalars#frame
|
521 |
+
|
522 |
+
## Results
|
523 |
+
|
524 |
+
The distilled model performs to within 1% WER of Whisper on out-of-distribution (OOD) short-form audio, and outperforms Whisper
|
525 |
+
by 0.1% on OOD long-form audio. This performance gain is attributed to lower hallucinations.
|
526 |
+
|
527 |
+
For a detailed per-dataset breakdown of the evaluation results, refer to Tables 16 and 17 of the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430)
|
528 |
+
|
529 |
+
Distil-Whisper is also evaluated on the [ESB benchmark](https://arxiv.org/abs/2210.13352) datasets as part of the [OpenASR leaderboard](https://huggingface.co/spaces/hf-audio/open_asr_leaderboard),
|
530 |
+
where it performs to within 0.2% WER of Whisper.
|
531 |
+
|
532 |
+
## Reproducing Distil-Whisper
|
533 |
+
|
534 |
+
Training and evaluation code to reproduce Distil-Whisper is available under the Distil-Whisper repository: https://github.com/huggingface/distil-whisper/tree/main/training
|
535 |
+
|
536 |
+
## License
|
537 |
+
|
538 |
+
Distil-Whisper inherits the [MIT license](https://github.com/huggingface/distil-whisper/blob/main/LICENSE) from OpenAI's Whisper model.
|
539 |
+
|
540 |
+
## Citation
|
541 |
+
|
542 |
+
If you use this model, please consider citing the [Distil-Whisper paper](https://arxiv.org/abs/2311.00430):
|
543 |
+
```
|
544 |
+
@misc{gandhi2023distilwhisper,
|
545 |
+
title={Distil-Whisper: Robust Knowledge Distillation via Large-Scale Pseudo Labelling},
|
546 |
+
author={Sanchit Gandhi and Patrick von Platen and Alexander M. Rush},
|
547 |
+
year={2023},
|
548 |
+
eprint={2311.00430},
|
549 |
+
archivePrefix={arXiv},
|
550 |
+
primaryClass={cs.CL}
|
551 |
+
}
|
552 |
+
```
|
553 |
+
|
554 |
+
## Acknowledgements
|
555 |
+
* OpenAI for the Whisper [model](https://huggingface.co/openai/whisper-large-v2) and [original codebase](https://github.com/openai/whisper)
|
556 |
+
* Hugging Face 🤗 [Transformers](https://github.com/huggingface/transformers) for the model integration
|
557 |
+
* Google's [TPU Research Cloud (TRC)](https://sites.research.google/trc/about/) programme for Cloud TPU v4s
|
558 |
+
* [`@rsonavane`](https://huggingface.co/rsonavane/distil-whisper-large-v2-8-ls) for releasing an early iteration of Distil-Whisper on the LibriSpeech dataset
|