File size: 2,021 Bytes
ab0ea62 5548e9d ab0ea62 5548e9d ab0ea62 5548e9d ab0ea62 5548e9d ab0ea62 5548e9d ab0ea62 5548e9d ab0ea62 5548e9d ab0ea62 5548e9d ab0ea62 5548e9d ab0ea62 5548e9d ab0ea62 5548e9d ab0ea62 5548e9d ab0ea62 5548e9d ab0ea62 5548e9d ab0ea62 5548e9d ab0ea62 5548e9d ab0ea62 5548e9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
library_name: transformers
license: apache-2.0
base_model: google/siglip2-so400m-patch16-naflex
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: train_dit02_initials_3cat_cls_3.5k_naflex-r2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# train_dit02_initials_3cat_cls_3.5k_naflex-r2
This model is a fine-tuned version of [google/siglip2-so400m-patch16-naflex](https://huggingface.co/google/siglip2-so400m-patch16-naflex) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6956
- Accuracy: 0.6418
- Precision: 0.6396
- Recall: 0.6418
- F1: 0.6307
- Roc Auc: 0.7587
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 96
- eval_batch_size: 96
- seed: 1337
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- num_epochs: 10.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Roc Auc |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:-------:|
| 0.184 | 3.125 | 100 | 0.3170 | 0.6754 | 0.6694 | 0.6754 | 0.6569 | 0.7862 |
| 0.038 | 6.25 | 200 | 0.5170 | 0.6474 | 0.6700 | 0.6474 | 0.6422 | 0.7691 |
| 0.013 | 9.375 | 300 | 0.6968 | 0.6474 | 0.6423 | 0.6474 | 0.6346 | 0.7590 |
### Framework versions
- Transformers 4.56.2
- Pytorch 2.7.1+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
|