--- base_model: gpt2 datasets: - wikimedia/wikipedia library_name: Distily license: mit tags: - bitnet - 1.58b - generated_from_trainer model-index: - name: distily_multi_experiment results: [] --- # Summary Distilled with [Distily](https://github.com/lapp0/distily) library using teacher model [gpt2](https://huggingface.co/gpt2) on dataset [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia). # Model Architecture: - **Architecture**: `GPT2LMHeadModel` - **Total Parameters**: 124,439,808 - **Data Type (dtype)**: torch.bfloat16 - **Model Size**: 0.24 GB # Evaluation Metrics Comparison | step | epoch | enwikippl | frwikippl | loss | runtime | samples_per_second | steps_per_second | tinystoriesppl | zhwikippl | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | **teacher eval** | | 43.25 | 61.25 | | | | | 11.6875 | 19.125 | | 0 | 0 | 2473901162496.0 | 170424302305280.0 | 21.1784 | 25.4152 | 98.366 | 12.315 | 4060086272.0 | 71468255805440.0 | | 2500 | 0.0404 | 764.0 | 5376.0 | 2.3596 | 25.4066 | 98.4 | 12.32 | 470.0 | 2096.0 | | 5000 | 0.0808 | 312.0 | 1344.0 | 1.6581 | 25.4693 | 98.157 | 12.289 | 232.0 | 241.0 | | 7500 | 0.1212 | 210.0 | 744.0 | 1.3794 | 25.4328 | 98.298 | 12.307 | 172.0 | 154.0 | | 10000 | 0.1616 | 158.0 | 560.0 | 1.1831 | 25.4425 | 98.261 | 12.302 | 129.0 | 156.0 | | 12500 | 0.2020 | 117.0 | 456.0 | 0.9687 | 25.4175 | 98.357 | 12.314 | 98.5 | 140.0 | | 15000 | 0.2424 | 103.5 | 418.0 | 0.8616 | 25.4115 | 98.381 | 12.317 | 84.5 | 110.5 | | 17500 | 0.2828 | 91.0 | 340.0 | 0.7766 | 25.4459 | 98.248 | 12.301 | 74.0 | 107.5 | | 20000 | 0.3232 | 78.5 | 300.0 | 0.7221 | 25.4945 | 98.06 | 12.277 | 66.0 | 173.0 | | 22500 | 0.3636 | 72.0 | 230.0 | 0.6270 | 25.4673 | 98.165 | 12.29 | 59.0 | 99.0 | | 25000 | 0.4040 | 67.5 | 211.0 | 0.5925 | 25.4934 | 98.064 | 12.278 | 49.75 | 118.5 | | 27500 | 0.4444 | 66.0 | 208.0 | 0.5720 | 25.4123 | 98.378 | 12.317 | 47.75 | 159.0 | | 30000 | 0.4848 | 65.5 | 215.0 | 0.5761 | 25.481 | 98.112 | 12.284 | 50.75 | 86.5 | | 32500 | 0.5253 | 64.5 | 189.0 | 0.5649 | 25.4585 | 98.199 | 12.295 | 47.0 | 80.5 | | 35000 | 0.5657 | 61.5 | 190.0 | 0.5213 | 25.4186 | 98.353 | 12.314 | 43.75 | 125.5 | | 37500 | 0.6061 | 61.75 | 167.0 | 0.5083 | 25.4687 | 98.16 | 12.29 | 46.5 | 74.0 | | 40000 | 0.6465 | 59.25 | 182.0 | 0.4943 | 25.4354 | 98.288 | 12.306 | 40.25 | 64.5 | | 42500 | 0.6869 | 58.75 | 165.0 | 0.4828 | 25.4783 | 98.123 | 12.285 | 41.75 | 83.0 | | 45000 | 0.7273 | 53.75 | 161.0 | 0.4080 | 25.4586 | 98.199 | 12.294 | 36.0 | 79.0 | | 47500 | 0.7677 | 53.0 | 135.0 | 0.3898 | 25.4198 | 98.349 | 12.313 | 35.0 | 72.0 | | 50000 | 0.8081 | 52.5 | 138.0 | 0.3778 | 25.4834 | 98.103 | 12.283 | 34.25 | 42.0 | | 52500 | 0.8485 | 50.75 | 132.0 | 0.3690 | 25.432 | 98.301 | 12.307 | 34.0 | 48.5 | | 55000 | 0.8889 | 50.5 | 126.0 | 0.3554 | 25.4536 | 98.218 | 12.297 | 32.5 | 37.25 | | 57500 | 0.9293 | 49.75 | 127.0 | 0.3516 | 25.4028 | 98.415 | 12.321 | 32.25 | 36.0 | | 60000 | 0.9697 | 49.75 | 124.5 | 0.3487 | 25.4725 | 98.145 | 12.288 | 32.0 | 35.75 | | 61875 | 1.0 | 49.75 | 125.0 | 0.3485 | 25.4582 | 98.2 | 12.295 | 32.0 | 35.75 | # Resource Usage Comparison - VRAM Use: 7.7851 GB # Distillation (Teacher -> Student) Architecture Difference: - **Architecture**: `GPT2LMHeadModel` -> `GPT2LMHeadModel` - **Total Parameters**: 124,439,808 -> 124,439,808 - **Data Type (dtype)**: torch.bfloat16 -> torch.bfloat16 - **Model Size**: 0.24 GB -> 0.24 GB
Module Diff Details ```diff ```

# Train Dataset Trained on 145,744,973 tokens from the [wikimedia/wikipedia](https://huggingface.co/datasets/wikimedia/wikipedia) dataset. - Num Samples: `247,500` - Subset: `20231101.en` - Split: `train` # Training Objective ``` DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=5, loss_fn=kl, layer_mapper=layer-2)) ``` # Hyperparameters The following hyperparameters were used during training:
Expand - learning_rate: `0.0001` - train_batch_size: `4` - eval_batch_size: `8` - seed: `42` - optimizer: `Adam with betas=(0.9,0.999) and epsilon=1e-08` - lr_scheduler_type: `linear` - lr_scheduler_warmup_ratio: `0.5` - num_epochs: `1.0` - distillation_objective: `DistillationObjective(logits_loss_component=LossComponent(label=logits, weight=1, loss_fn=kl), attn_loss_component=LossComponent(label=attn, weight=5, loss_fn=kl, layer_mapper=layer-2))` - train_embeddings: `True` - lr_scheduler: `` - student_model_name_or_path: `None` - student_config_name_or_path: `None` - student_model_config: `None` - reinitialize_weights: `None` - copy_teacher_modules: `[('lm_head', False)]` - student_model_as_bitnet: `True` - student_model_compile: `False` - dropout: `None` - teacher_model_name_or_path: `gpt2` - teacher_load_in_8bit: `False` - teacher_load_in_4bit: `False` - teacher_model_compile: `False` - dataset_uri: `wikimedia/wikipedia` - dataset_subset: `20231101.en` - dataset_split: `train` - dataset_column_name: `text` - dataset_sample_size: `250000` - dataset_test_size: `0.01` - gradient_accumulation_steps: `1` - weight_decay: `0.0` - max_grad_norm: `1.0` - warmup_ratio: `0.5` - warmup_steps: `0` - gradient_checkpointing: `True`

# Framework Versions - Distily 0.2.0 - Transformers 4.44.1 - Pytorch 2.5.0.dev20240821+cu121 - Datasets 2.21.0