- handler.py +65 -0
handler.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from transformers import pipeline
|
3 |
+
from diffusers import AutoPipelineForText2Image
|
4 |
+
import torch
|
5 |
+
import base64
|
6 |
+
from io import BytesIO
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
|
10 |
+
class EndpointHandler():
|
11 |
+
def __init__(self, path=""):
|
12 |
+
self.pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16")
|
13 |
+
self.pipe.to("cuda")
|
14 |
+
|
15 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
16 |
+
"""
|
17 |
+
data args:
|
18 |
+
inputs (:obj: `str`)
|
19 |
+
date (:obj: `str`)
|
20 |
+
Return:
|
21 |
+
A :obj:`list` | `dict`: will be serialized and returned
|
22 |
+
"""
|
23 |
+
# get inputs
|
24 |
+
inputs = data.pop("inputs", data)
|
25 |
+
encoded_image = data.pop("image", None)
|
26 |
+
encoded_mask_image = data.pop("mask_image", None)
|
27 |
+
|
28 |
+
# hyperparamters
|
29 |
+
num_inference_steps = data.pop("num_inference_steps", 25)
|
30 |
+
guidance_scale = data.pop("guidance_scale", 7.5)
|
31 |
+
negative_prompt = data.pop("negative_prompt", None)
|
32 |
+
height = data.pop("height", None)
|
33 |
+
width = data.pop("width", None)
|
34 |
+
|
35 |
+
# process image
|
36 |
+
if encoded_image is not None and encoded_mask_image is not None:
|
37 |
+
image = self.decode_base64_image(encoded_image)
|
38 |
+
mask_image = self.decode_base64_image(encoded_mask_image)
|
39 |
+
else:
|
40 |
+
image = None
|
41 |
+
mask_image = None
|
42 |
+
|
43 |
+
# run inference pipeline
|
44 |
+
out = self.pipe(inputs,
|
45 |
+
image=image,
|
46 |
+
mask_image=mask_image,
|
47 |
+
num_inference_steps=num_inference_steps,
|
48 |
+
guidance_scale=guidance_scale,
|
49 |
+
num_images_per_prompt=1,
|
50 |
+
negative_prompt=negative_prompt,
|
51 |
+
height=height,
|
52 |
+
width=width
|
53 |
+
)
|
54 |
+
|
55 |
+
# return first generate PIL image
|
56 |
+
return out.images[0]
|
57 |
+
|
58 |
+
# helper to decode input image
|
59 |
+
def decode_base64_image(self, image_string):
|
60 |
+
base64_image = base64.b64decode(image_string)
|
61 |
+
buffer = BytesIO(base64_image)
|
62 |
+
image = Image.open(buffer)
|
63 |
+
return image
|
64 |
+
|
65 |
+
|