--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-ft1500_norm300_aug5_10 results: [] --- # distilbert-base-uncased-finetuned-ft1500_norm300_aug5_10 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0781 - Mse: 4.3123 - Mae: 1.3743 - R2: 0.4703 - Accuracy: 0.3626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:--------:| | 0.9715 | 1.0 | 4743 | 1.0839 | 4.3355 | 1.4262 | 0.4675 | 0.3037 | | 0.676 | 2.0 | 9486 | 1.0891 | 4.3563 | 1.4474 | 0.4649 | 0.2454 | | 0.4256 | 3.0 | 14229 | 1.0781 | 4.3123 | 1.3743 | 0.4703 | 0.3626 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1