--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilbert-base-uncased-finetuned-ft1500_norm500_aug1 results: [] --- # distilbert-base-uncased-finetuned-ft1500_norm500_aug1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.9086 - Mse: 3.6357 - Mae: 1.0762 - R2: 0.2894 - Accuracy: 0.5170 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:--------:| | 1.5856 | 1.0 | 5847 | 3.3101 | 4.1376 | 1.1447 | 0.1913 | 0.4965 | | 0.442 | 2.0 | 11694 | 2.7448 | 3.4311 | 1.0934 | 0.3294 | 0.4523 | | 0.2703 | 3.0 | 17541 | 2.9300 | 3.6625 | 1.0907 | 0.2841 | 0.4933 | | 0.1699 | 4.0 | 23388 | 2.7979 | 3.4973 | 1.0808 | 0.3164 | 0.4805 | | 0.1168 | 5.0 | 29235 | 2.9086 | 3.6357 | 1.0762 | 0.2894 | 0.5170 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.0+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1