File size: 19,747 Bytes
d2cee1a 9e478c8 d2cee1a 19f6a63 d2cee1a 9e478c8 d2cee1a 9e478c8 d2cee1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
# Description: This file contains the handcrafted solution for the task of wireframe reconstruction
import io
from PIL import Image as PImage
import numpy as np
from collections import defaultdict
import cv2
from typing import Tuple, List
from scipy.spatial.distance import cdist
from scipy.optimize import minimize
def empty_solution():
'''Return a minimal valid solution, i.e. 2 vertices and 1 edge.'''
return np.zeros((2,3)), [(0, 1)]
def read_colmap_rec(colmap_data):
import pycolmap
import tempfile,zipfile
import io
with tempfile.TemporaryDirectory() as tmpdir:
with zipfile.ZipFile(io.BytesIO(colmap_data), "r") as zf:
zf.extractall(tmpdir) # unpacks cameras.txt, images.txt, etc. to tmpdir
# Now parse with pycolmap
rec = pycolmap.Reconstruction(tmpdir)
return rec
def convert_entry_to_human_readable(entry):
out = {}
for k, v in entry.items():
if 'colmap' in k:
out[k] = read_colmap_rec(v)
elif k in ['wf_vertices', 'wf_edges', 'K', 'R', 't']:
out[k] = np.array(v)
else:
out[k]=v
out['__key__'] = entry['order_id']
return out
def point_to_segment_dist(pt, seg_p1, seg_p2):
"""
Computes the Euclidean distance from pt to the line segment p1->p2.
pt, seg_p1, seg_p2: (x, y) as np.ndarray
"""
# If both endpoints are the same, just return distance to one of them
if np.allclose(seg_p1, seg_p2):
return np.linalg.norm(pt - seg_p1)
seg_vec = seg_p2 - seg_p1
pt_vec = pt - seg_p1
seg_len2 = seg_vec.dot(seg_vec)
t = max(0, min(1, pt_vec.dot(seg_vec)/seg_len2))
proj = seg_p1 + t*seg_vec
return np.linalg.norm(pt - proj)
def get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th=25.0):
"""
Identify apex and eave-end vertices, then detect lines for eave/ridge/rake/valley.
For each connected component, we do a line fit with cv2.fitLine, then measure
segment endpoints more robustly. We then associate apex points that are within
'edge_th' of the line segment. We record those apex–apex connections for edges
if at least 2 apexes lie near the same component line.
"""
from hoho.color_mappings import gestalt_color_mapping # for apex, eave_end_point, etc.
#--------------------------------------------------------------------------------
# Step A: Collect apex and eave_end vertices
#--------------------------------------------------------------------------------
vertices = []
# Apex
apex_color = np.array(gestalt_color_mapping['apex'])
apex_mask = cv2.inRange(gest_seg_np, apex_color-0.5, apex_color+0.5)
if apex_mask.sum() > 0:
output = cv2.connectedComponentsWithStats(apex_mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:] # skip background
for i in range(numLabels-1):
vert = {"xy": centroids[i], "type": "apex"}
vertices.append(vert)
# Eave end
eave_end_color = np.array(gestalt_color_mapping['eave_end_point'])
eave_end_mask = cv2.inRange(gest_seg_np, eave_end_color-0.5, eave_end_color+0.5)
if eave_end_mask.sum() > 0:
output = cv2.connectedComponentsWithStats(eave_end_mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
stats, centroids = stats[1:], centroids[1:]
for i in range(numLabels-1):
vert = {"xy": centroids[i], "type": "eave_end_point"}
vertices.append(vert)
# Consolidate apex points as array:
apex_pts = []
apex_idx_map = [] # keep track of index in 'vertices'
for idx, v in enumerate(vertices):
apex_pts.append(v['xy'])
apex_idx_map.append(idx)
apex_pts = np.array(apex_pts)
connections = []
edge_classes = ['eave', 'ridge', 'rake', 'valley']
for edge_class in edge_classes:
edge_color = np.array(gestalt_color_mapping[edge_class])
mask_raw = cv2.inRange(gest_seg_np, edge_color-0.5, edge_color+0.5)
# Possibly do morphological open/close to avoid merges or small holes
kernel = np.ones((5, 5), np.uint8) # smaller kernel to reduce over-merge
mask = cv2.morphologyEx(mask_raw, cv2.MORPH_CLOSE, kernel)
if mask.sum() == 0:
continue
# Connected components
output = cv2.connectedComponentsWithStats(mask, 8, cv2.CV_32S)
(numLabels, labels, stats, centroids) = output
# skip the background
stats, centroids = stats[1:], centroids[1:]
label_indices = range(1, numLabels)
# For each connected component, do a line fit
for lbl in label_indices:
ys, xs = np.where(labels == lbl)
if len(xs) < 2:
continue
# Fit a line using cv2.fitLine
pts_for_fit = np.column_stack([xs, ys]).astype(np.float32)
# (vx, vy, x0, y0) = direction + a point on the line
line_params = cv2.fitLine(pts_for_fit, distType=cv2.DIST_L2,
param=0, reps=0.01, aeps=0.01)
vx, vy, x0, y0 = line_params.ravel()
# We'll approximate endpoints by projecting (xs, ys) onto the line,
# then taking min and max in the 1D param along the line.
# param along the line = ( (x - x0)*vx + (y - y0)*vy )
proj = ( (xs - x0)*vx + (ys - y0)*vy )
proj_min, proj_max = proj.min(), proj.max()
p1 = np.array([x0 + proj_min*vx, y0 + proj_min*vy])
p2 = np.array([x0 + proj_max*vx, y0 + proj_max*vy])
#--------------------------------------------------------------------------------
# Step C: If apex points are within 'edge_th' of segment, they are connected
#--------------------------------------------------------------------------------
if len(apex_pts) < 2:
continue
# Distance from each apex to the line segment
dists = np.array([
point_to_segment_dist(apex_pts[i], p1, p2)
for i in range(len(apex_pts))
])
# Indices of apex points that are near
near_mask = (dists <= edge_th)
near_indices = np.where(near_mask)[0]
if len(near_indices) < 2:
continue
# Connect each pair among these near apex points
for i in range(len(near_indices)):
for j in range(i+1, len(near_indices)):
a_idx = near_indices[i]
b_idx = near_indices[j]
# 'a_idx' and 'b_idx' are indices in apex_pts / apex_idx_map
vA = apex_idx_map[a_idx]
vB = apex_idx_map[b_idx]
# Store the connection using sorted indexing
conn = tuple(sorted((vA, vB)))
connections.append(conn)
return vertices, connections
def get_uv_depth(vertices, depth_fitted, sparse_depth, search_radius=10):
"""
For each vertex, returns a 2D array of (u,v) and a matching 1D array of depths.
We attempt to use the sparse_depth if available in a local neighborhood:
1. For each vertex coordinate (x, y), define a local window in sparse_depth
of size (2*search_radius + 1).
2. Collect all valid (nonzero) values in that window.
3. If any exist, we take the median (robust) as the vertex depth.
4. Otherwise, we use depth_fitted[y, x].
Parameters
----------
vertices : List[dict]
Each dict must have "xy" at least, e.g. {"xy": (x, y), ...}
depth_fitted : np.ndarray
A 2D array (H, W), the dense (or corrected) depth for fallback.
sparse_depth : np.ndarray
A 2D array (H, W), mostly zeros except where accurate data is available.
search_radius : int
Pixel radius around the vertex in which to look for sparse depth values.
Returns
-------
uv : np.ndarray of shape (N, 2)
2D float coordinates of each vertex (x, y).
vertex_depth : np.ndarray of shape (N,)
Depth value chosen for each vertex.
"""
# Collect each vertex's (x, y)
uv = np.array([v['xy'] for v in vertices], dtype=np.float32)
# Convert to integer pixel coordinates (round or floor)
uv_int = np.round(uv).astype(np.int32)
H, W = depth_fitted.shape[:2]
# Clip coordinates to stay within image bounds
uv_int[:, 0] = np.clip(uv_int[:, 0], 0, W-1)
uv_int[:, 1] = np.clip(uv_int[:, 1], 0, H-1)
# Prepare output array of depths
vertex_depth = np.zeros(len(vertices), dtype=np.float32)
for i, (x_i, y_i) in enumerate(uv_int):
# Local region in [x_i - search_radius, x_i + search_radius]
x0 = max(0, x_i - search_radius)
x1 = min(W, x_i + search_radius + 1)
y0 = max(0, y_i - search_radius)
y1 = min(H, y_i + search_radius + 1)
region = sparse_depth[y0:y1, x0:x1]
valid_vals = region[region > 0]
if len(valid_vals) > 0:
# Use median of valid sparse depth
vertex_depth[i] = np.median(valid_vals)
else:
# Fallback to depth_fitted at this pixel
vertex_depth[i] = depth_fitted[y_i, x_i]
return uv, vertex_depth
def merge_vertices_3d(vert_edge_per_image, th=0.5):
'''Merge vertices that are close to each other in 3D space and are of same types'''
all_3d_vertices = []
connections_3d = []
all_indexes = []
cur_start = 0
types = []
for cimg_idx, (vertices, connections, vertices_3d) in vert_edge_per_image.items():
types += [int(v['type']=='apex') for v in vertices]
all_3d_vertices.append(vertices_3d)
connections_3d+=[(x+cur_start,y+cur_start) for (x,y) in connections]
cur_start+=len(vertices_3d)
all_3d_vertices = np.concatenate(all_3d_vertices, axis=0)
#print (connections_3d)
distmat = cdist(all_3d_vertices, all_3d_vertices)
types = np.array(types).reshape(-1,1)
same_types = cdist(types, types)
mask_to_merge = (distmat <= th) & (same_types==0)
new_vertices = []
new_connections = []
to_merge = sorted(list(set([tuple(a.nonzero()[0].tolist()) for a in mask_to_merge])))
to_merge_final = defaultdict(list)
for i in range(len(all_3d_vertices)):
for j in to_merge:
if i in j:
to_merge_final[i]+=j
for k, v in to_merge_final.items():
to_merge_final[k] = list(set(v))
already_there = set()
merged = []
for k, v in to_merge_final.items():
if k in already_there:
continue
merged.append(v)
for vv in v:
already_there.add(vv)
old_idx_to_new = {}
count=0
for idxs in merged:
new_vertices.append(all_3d_vertices[idxs].mean(axis=0))
for idx in idxs:
old_idx_to_new[idx] = count
count +=1
#print (connections_3d)
new_vertices=np.array(new_vertices)
#print (connections_3d)
for conn in connections_3d:
new_con = sorted((old_idx_to_new[conn[0]], old_idx_to_new[conn[1]]))
if new_con[0] == new_con[1]:
continue
if new_con not in new_connections:
new_connections.append(new_con)
#print (f'{len(new_vertices)} left after merging {len(all_3d_vertices)} with {th=}')
return new_vertices, new_connections
def prune_not_connected(all_3d_vertices, connections_3d, keep_largest=True):
"""
Prune vertices not connected to anything. If keep_largest=True, also
keep only the largest connected component in the graph.
"""
if len(all_3d_vertices) == 0:
return np.array([]), []
# adjacency
adj = defaultdict(set)
for (i, j) in connections_3d:
adj[i].add(j)
adj[j].add(i)
# keep only vertices that appear in at least one edge
used_idxs = set()
for (i, j) in connections_3d:
used_idxs.add(i)
used_idxs.add(j)
if not used_idxs:
return np.empty((0,3)), []
# If we only want to remove truly isolated points, but keep multiple subgraphs:
if not keep_largest:
new_map = {}
used_list = sorted(list(used_idxs))
for new_id, old_id in enumerate(used_list):
new_map[old_id] = new_id
new_vertices = np.array([all_3d_vertices[old_id] for old_id in used_list])
new_conns = []
for (i, j) in connections_3d:
if i in used_idxs and j in used_idxs:
new_conns.append((new_map[i], new_map[j]))
return new_vertices, new_conns
# Otherwise find the largest connected component:
visited = set()
def bfs(start):
queue = [start]
comp = []
visited.add(start)
while queue:
cur = queue.pop()
comp.append(cur)
for neigh in adj[cur]:
if neigh not in visited:
visited.add(neigh)
queue.append(neigh)
return comp
# Collect all subgraphs
comps = []
for idx in used_idxs:
if idx not in visited:
c = bfs(idx)
comps.append(c)
# pick largest
comps.sort(key=lambda c: len(c), reverse=True)
largest = comps[0] if len(comps)>0 else []
# Remap
new_map = {}
for new_id, old_id in enumerate(largest):
new_map[old_id] = new_id
new_vertices = np.array([all_3d_vertices[old_id] for old_id in largest])
new_conns = []
for (i, j) in connections_3d:
if i in largest and j in largest:
new_conns.append((new_map[i], new_map[j]))
# remove duplicates
new_conns = list(set([tuple(sorted(c)) for c in new_conns]))
return new_vertices, new_conns
def get_sparse_depth(colmap_rec, img_id, K, R, t, depth):
H, W = depth.shape
xyz = []
rgb = []
found = False
#print (img_id)
for img_id_c, col_img in colmap_rec.images.items():
print (col_img.name)
if col_img.name == img_id:
found = True
break
if not found:
print (f"{img_id} not found, returning empty depth")
return np.zeros((H, W), dtype=np.float32), False
mat4x4 = np.eye(4)
mat4x4[:3 ] = col_img.cam_from_world.matrix()
for pid,p in colmap_rec.points3D.items():
if col_img.has_point3D(pid):
xyz.append(p.xyz)
rgb.append(p.color)
xyz = np.array(xyz)
rgb = np.array(rgb)
xyz_projected = cv2.transform(cv2.convertPointsToHomogeneous(xyz), mat4x4)
xyz_projected = cv2.convertPointsFromHomogeneous(xyz_projected).reshape(-1, 3)
uv, _ = cv2.projectPoints(xyz_projected, np.zeros(3), np.zeros(3), np.array(K), np.zeros(4))
uv = uv.squeeze()
u, v = uv[:, 0].astype(np.int32), uv[:, 1].astype(np.int32)
mask = (u >= 0) & (u < W) & (v >= 0) & (v < H)
u, v = u[mask], v[mask]
xyz_projected, rgb = xyz_projected[mask], rgb[mask]
depth = np.zeros((H, W), dtype=np.float32)
depth[v, u] = xyz_projected[:, 2]
return depth, True
def fit_scale_robust_median(depth, sparse_depth):
"""
Fits the model sparse_depth ~ k * depth + b by minimizing the median
of absolute residuals, i.e. median( |sparse_depth - (k*depth + b)| ).
Parameters
----------
depth : np.ndarray
Array of depth estimates (same shape as sparse_depth).
sparse_depth : np.ndarray
Sparse array with precise depth at certain locations
(0 where data is unavailable).
Returns
-------
k : float
The slope of the robust best-fit affine transform.
b : float
The intercept of the robust best-fit affine transform.
depth_fitted : np.ndarray
The depth array adjusted by the affine fit: k*depth + b.
"""
# 1. Create mask of valid (nonzero) locations in sparse_depth
mask = (sparse_depth != 0)
X = depth[mask]
Y = sparse_depth[mask]
# 2. Define the objective: median of absolute residuals
def median_abs_resid(params, xvals, yvals):
k, b = params
return np.median(np.abs(yvals - (k*xvals)))
k_init, b_init = 1.0, 0.0
# 4. Optimize using a derivative-free method (Nelder-Mead)
res = minimize(
fun=median_abs_resid,
x0=[k_init, b_init],
args=(X, Y),
method='Nelder-Mead'
)
k_robust, b_robust = res.x
# 5. Construct the fitted depth array
depth_fitted = k_robust * depth #+ b_robust
return k_robust, depth_fitted
def predict(entry, visualize=False) -> Tuple[np.ndarray, List[int]]:
good_entry = convert_entry_to_human_readable(entry)
vert_edge_per_image = {}
for i, (gest, depth, K, R, t, img_id) in enumerate(zip(good_entry['gestalt'],
good_entry['depth'],
good_entry['K'],
good_entry['R'],
good_entry['t'],
good_entry['image_ids']
)):
colmap_rec = good_entry['colmap_binary']
K = np.array(K)
R = np.array(R)
t = np.array(t)
gest_seg = gest.resize(depth.size)
gest_seg_np = np.array(gest_seg).astype(np.uint8)
# Metric3D
depth_np = np.array(depth) / 1000.
depth_sparse, found = get_sparse_depth(colmap_rec, img_id, K, R, t, depth_np)
if not found:
print (f'No sparse depth found for image {i}')
vert_edge_per_image[i] = np.empty((0, 2)), [], np.empty((0, 3))
continue
k, depth_fitted = fit_scale_robust_median(depth_np, depth_sparse)#fit_affine_robust_median(depth_np, depth_sparse)
print (k)
vertices, connections = get_vertices_and_edges_from_segmentation(gest_seg_np, edge_th = 50.)
if (len(vertices) < 2) or (len(connections) < 1):
print (f'Not enough vertices or connections in image {i}')
vert_edge_per_image[i] = np.empty((0, 2)), [], np.empty((0, 3))
continue
uv, depth_vert = get_uv_depth(vertices, depth_fitted, depth_sparse, 50)
# Normalize the uv to the camera intrinsics
X = (uv[:, 0] - K[0, 2]) / K[0, 0] * depth_vert
Y = (uv[:, 1] - K[1, 2]) / K[1, 1] * depth_vert
Z = depth_vert
vertices_3d_local = np.column_stack([X, Y, Z])
world_to_cam = np.eye(4)
world_to_cam[:3, :3] = R
world_to_cam[:3, 3] = t.reshape(-1)
cam_to_world = np.linalg.inv(world_to_cam)
vertices_3d = cv2.transform(cv2.convertPointsToHomogeneous(vertices_3d_local), cam_to_world)
vertices_3d = cv2.convertPointsFromHomogeneous(vertices_3d).reshape(-1, 3)
vert_edge_per_image[i] = vertices, connections, vertices_3d
all_3d_vertices, connections_3d = merge_vertices_3d(vert_edge_per_image, 0.25)
all_3d_vertices_clean, connections_3d_clean = prune_not_connected(all_3d_vertices, connections_3d, keep_largest=False)
if (len(all_3d_vertices_clean) < 2) or len(connections_3d_clean) < 1:
print (f'Not enough vertices or connections in the 3D vertices')
return empty_solution()
if visualize:
from hoho.viz3d import plot_estimate_and_gt
plot_estimate_and_gt( all_3d_vertices_clean,
connections_3d_clean,
good_entry['wf_vertices'],
good_entry['wf_edges'])
return all_3d_vertices_clean, connections_3d_clean
|