likejazz commited on
Commit
efac130
·
verified ·
1 Parent(s): c182736

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +27 -124
README.md CHANGED
@@ -10,6 +10,7 @@ tags:
10
  - slm
11
  - conversation
12
  - chat
 
13
  base_model:
14
  - dnotitia/Llama-DNA-1.0-8B-Instruct
15
  library_name: transformers
@@ -17,150 +18,52 @@ pipeline_tag: text-generation
17
  ---
18
 
19
  # DNA 1.0 8B Instruct
20
- <br>
21
  <p align="center">
22
  <img src="assets/dna-logo.png" width="400" style="margin: 40px auto;">
23
  </p>
24
- <br>
25
-
26
- ## Introduction
27
-
28
- We introduce **DNA 1.0 8B Instruct**, a state-of-the-art (**SOTA**) bilingual language model optimized for both Korean and English languages, developed and released by **Dnotitia Inc.** This model is based on the Llama architecture and has been meticulously enhanced through various advanced training techniques to excel in language understanding and generation tasks.
29
-
30
- The DNA 1.0 8B Instruct model has undergone a sophisticated development process:
31
-
32
- - **Model Merging via SLERP:** Combined with Llama 3.1 8B Instruct using spherical linear interpolation to enhance performance.
33
- - **Knowledge Distillation (KD):** Utilizing Llama 3.1 405B as the teacher model to improve knowledge representation.
34
- - **Continual Pre-Training (CPT):** Trained on a high-quality Korean dataset to boost language capabilities.
35
- - **Supervised Fine-Tuning (SFT):** Aligned with human preferences through fine-tuning on curated data.
36
- - **Direct Preference Optimization (DPO):** Enhanced instruction-following abilities for better user interaction.
37
-
38
- Each model supports long-context processing of up to **131,072 tokens (128K)**, enabling it to handle extensive conversational histories and long documents effectively.
39
 
40
- <br>
41
-
42
- ## Evaluation
43
-
44
- We evaluated DNA 1.0 8B Instruct against other prominent language models of similar sizes across various benchmarks, including Korean-specific tasks and general language understanding metrics.
45
-
46
- <br>
47
-
48
- <table>
49
- <tr>
50
- <th>Language</th>
51
- <th>Benchmark</th>
52
- <th>dnotitia<br>DNA 1.0<br>8B Instruct</th>
53
- <th>EXAONE 3.5<br>7.8B</th>
54
- <th>Qwen 2.5<br>7B</th>
55
- <th>Llama 3.1<br>8B</th>
56
- <th>Mistral<br>7B</th>
57
- </tr>
58
- <tr>
59
- <td rowspan="5">Korean</td>
60
- <td>KMMLU</td>
61
- <td align="center"><strong>53.26</strong></td>
62
- <td align="center">45.30</td>
63
- <td align="center">45.66</td>
64
- <td align="center">41.66</td>
65
- <td align="center">31.45</td>
66
- </tr>
67
- <tr>
68
- <td>KMMLU-Hard</td>
69
- <td align="center"><strong>29.46</strong></td>
70
- <td align="center">23.17</td>
71
- <td align="center">24.78</td>
72
- <td align="center">20.49</td>
73
- <td align="center">17.86</td>
74
- </tr>
75
- <tr>
76
- <td>KoBEST</td>
77
- <td align="center"><strong>83.40</strong></td>
78
- <td align="center">79.05</td>
79
- <td align="center">78.51</td>
80
- <td align="center">67.56</td>
81
- <td align="center">63.77</td>
82
- </tr>
83
- <tr>
84
- <td>Belebele</td>
85
- <td align="center"><strong>57.99</strong></td>
86
- <td align="center">40.97</td>
87
- <td align="center">54.85</td>
88
- <td align="center">54.70</td>
89
- <td align="center">40.31</td>
90
- </tr>
91
- <tr>
92
- <td>CSAT QA</td>
93
- <td align="center">43.32</td>
94
- <td align="center">40.11</td>
95
- <td align="center"><strong>45.45</strong></td>
96
- <td align="center">36.90</td>
97
- <td align="center">27.27</td>
98
- </tr>
99
- <tr>
100
- <td rowspan="3">English</td>
101
- <td>MMLU</td>
102
- <td align="center">66.64</td>
103
- <td align="center">65.27</td>
104
- <td align="center"><strong>74.26</strong></td>
105
- <td align="center">68.26</td>
106
- <td align="center">62.04</td>
107
- </tr>
108
- <tr>
109
- <td>MMLU Pro</td>
110
- <td align="center"><strong>43.05</strong></td>
111
- <td align="center">40.73</td>
112
- <td align="center">42.50</td>
113
- <td align="center">40.92</td>
114
- <td align="center">33.49</td>
115
- </tr>
116
- <tr>
117
- <td>GSM8K</td>
118
- <td align="center"><strong>80.52</strong></td>
119
- <td align="center">65.96</td>
120
- <td align="center">75.74</td>
121
- <td align="center">75.82</td>
122
- <td align="center">49.66</td>
123
- </tr>
124
- </table>
125
-
126
- - The **highest scores** are in **bold**.
127
-
128
- <br>
129
 
130
- **Evaluation Protocol**
131
 
132
- For easy reproduction of our evaluation results, we list the evaluation tools and settings used below:
 
 
 
 
 
133
 
134
- | Benchmark | Evaluation Setting | Metric | Evaluation Tool |
135
- |-------------|--------------------|-------------------------------------|--------------------|
136
- | KMMLU | 5-shot | `macro_avg` / `exact_match` | `lm-eval-harness` |
137
- | KMMLU-Hard | 5-shot | `macro_avg` / `exact_match` | `lm-eval-harness` |
138
- | KoBEST | 5-shot | `macro_avg` / `f1` | `lm-eval-harness` |
139
- | Belebele | 0-shot | `accuracy` | `lm-eval-harness` |
140
- | CSAT QA | 0-shot | `accuracy_normalized` | `lm-eval-harness` |
141
- | MMLU | 5-shot | `macro_avg` / `accuracy` | `lm-eval-harness` |
142
- | MMLU Pro | 5-shot | `macro_avg` / `exact_match` | `lm-eval-harness` |
143
- | GSM8K | 5-shot | `accuracy` / `exact_match` | `lm-eval-harness` |
144
-
145
- <br>
146
 
147
  ## Quickstart
148
 
149
  We offer weights in `F32`, `F16` formats and quantized weights in `Q8_0`, `Q6_K`, `Q5_K`, `Q4_K`, `Q3_K` and `Q2_K` formats.
150
 
151
- You can download the GGUF weights as follows:
 
 
 
 
152
 
153
  ```bash
154
  # Install huggingface_hub if not already installed
155
- pip install huggingface_hub
156
 
157
  # Download the GGUF weights
158
- huggingface-cli download dnotitia/Llama-DNA-1.0-8B-Instruct-GGUF \
159
- --include "DNA-1.0-8B-Instruct-Q8_0.gguf" \
160
  --local-dir .
161
  ```
162
 
163
- <br>
 
 
 
 
 
164
 
165
  ## Run Locally
166
 
 
10
  - slm
11
  - conversation
12
  - chat
13
+ - gguf
14
  base_model:
15
  - dnotitia/Llama-DNA-1.0-8B-Instruct
16
  library_name: transformers
 
18
  ---
19
 
20
  # DNA 1.0 8B Instruct
21
+
22
  <p align="center">
23
  <img src="assets/dna-logo.png" width="400" style="margin: 40px auto;">
24
  </p>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
+ **DNA 1.0 8B Instruct** is a <u>state-of-the-art (**SOTA**)</u> bilingual language model based on Llama architecture, specifically optimized for Korean language understanding and generation, while also maintaining strong English capabilities. The model was developed through a sophisticated process involving model merging via spherical linear interpolation (**SLERP**) with Llama 3.1 8B Instruct, and underwent knowledge distillation (**KD**) using Llama 3.1 405B as the teacher model. It was extensively trained through continual pre-training (**CPT**) with a high-quality Korean dataset. The training pipeline was completed with supervised fine-tuning (**SFT**) and direct preference optimization (**DPO**) to align with human preferences and enhance instruction-following abilities.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
+ DNA 1.0 8B Instruct was fine-tuned on approximately 10B tokens of carefully curated data and has undergone extensive instruction tuning to enhance its ability to follow complex instructions and engage in natural conversations.
29
 
30
+ - **Developed by:** Dnotitia Inc.
31
+ - **Supported Languages:** Korean, English
32
+ - **Model Release Date:** Dec 10, 2024
33
+ - **Vocab Size:** 128,256
34
+ - **Context Length:** 131,072 tokens (128k)
35
+ - **License:** CC BY-NC 4.0
36
 
37
+ <p align="center">
38
+ <img src="assets/training-procedure.png" width="600" style="margin: 40px auto;">
39
+ </p>
 
 
 
 
 
 
 
 
 
40
 
41
  ## Quickstart
42
 
43
  We offer weights in `F32`, `F16` formats and quantized weights in `Q8_0`, `Q6_K`, `Q5_K`, `Q4_K`, `Q3_K` and `Q2_K` formats.
44
 
45
+ You can run GGUF weights with `llama.cpp` as follows:
46
+
47
+ 1. Install `llama.cpp`. Please refer to the [llama.cpp repository](https://github.com/ggerganov/llama.cpp) for more details.
48
+
49
+ 2. Download DNA 1.0 8B Instruct model in GGUF format.
50
 
51
  ```bash
52
  # Install huggingface_hub if not already installed
53
+ $ pip install huggingface_hub[cli]
54
 
55
  # Download the GGUF weights
56
+ $ huggingface-cli download dnotitia/Llama-DNA-1.0-8B-Instruct-GGUF \
57
+ --include "Llama-DNA-1.0-8B-Instruct-Q8_0.gguf" \
58
  --local-dir .
59
  ```
60
 
61
+ 3. Run the model with `llama.cpp` in conversational mode.
62
+
63
+ ```bash
64
+ $ llama-cli -cnv -m ./Llama-DNA-1.0-8B-Instruct-Q8_0.gguf \
65
+ -p "You are a helpful assistant, Dnotitia DNA."
66
+ ```
67
 
68
  ## Run Locally
69