--- license: apache-2.0 language: - ja metrics: - cer - wer base_model: - openai/whisper-medium tags: - ctranslate2 - faster-whisper - whisper model-index: - name: whisper-medium-jp-ct2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_17_0 (ja) type: mozilla-foundation/common_voice_17_0 config: ja split: test args: language: ja metrics: - name: CER type: cer value: 0.18572446886192148 --- > **This repository contains the CTranslate2 export of the fine-tuned model.** > > • Base Transformers model: [drepic/whisper-medium-jp](https://huggingface.co/drepic/whisper-medium-jp) > • Use with `faster-whisper`: > > ```python > from faster_whisper import WhisperModel > model = WhisperModel("drepic/whisper-medium-jp-ct2", device="cuda", compute_type="float16") > ``` # OTHER FINETUNES - Want something more lightweight? Try [drepic/whisper-small-jp-ct2](https://huggingface.co/drepic/whisper-small-jp-ct2) # whisper-medium-jp This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on an Japanese youtube based dataset. It achieves the following results on the evaluation set: - Loss: 0.4828 - Wer: 0.2254 - Cer: 0.2254 ## Model description Better suited for transcribing japanese youtube content. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-06 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 400 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 0.5341 | 1.0 | 7155 | 0.5321 | 0.2416 | 0.2416 | | 0.5023 | 2.0 | 14310 | 0.5143 | 0.2369 | 0.2369 | | 0.499 | 3.0 | 21465 | 0.5063 | 0.2337 | 0.2337 | | 0.4773 | 4.0 | 28620 | 0.5010 | 0.2310 | 0.2310 | | 0.4775 | 5.0 | 35775 | 0.4944 | 0.2289 | 0.2289 | | 0.4709 | 6.0 | 42930 | 0.4886 | 0.2288 | 0.2288 | | 0.4907 | 7.0 | 50085 | 0.4870 | 0.2271 | 0.2271 | | 0.4855 | 8.0 | 57240 | 0.4868 | 0.2261 | 0.2261 | | 0.4487 | 9.0 | 64395 | 0.4828 | 0.2254 | 0.2254 | ### Framework versions - Transformers 4.56.1 - Pytorch 2.8.0+cu128 - Datasets 4.0.0 - Tokenizers 0.22.0