add or update model card
Browse files
README.md
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- pt
|
| 4 |
+
library_name: transformers
|
| 5 |
+
pipeline_tag: feature-extraction
|
| 6 |
+
tags:
|
| 7 |
+
- BERT
|
| 8 |
+
- encoder
|
| 9 |
+
- embeddings
|
| 10 |
+
- TiME
|
| 11 |
+
- pt
|
| 12 |
+
- size:m
|
| 13 |
+
license: apache-2.0
|
| 14 |
+
teacher_model: FacebookAI/xlm-roberta-large
|
| 15 |
+
datasets:
|
| 16 |
+
- uonlp/CulturaX
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# TiME Portuguese (pt, m)
|
| 20 |
+
|
| 21 |
+
Monolingual BERT-style encoder that outputs embeddings for Portuguese.
|
| 22 |
+
Distilled from FacebookAI/xlm-roberta-large.
|
| 23 |
+
|
| 24 |
+
## Specs
|
| 25 |
+
- language: Portuguese (pt)
|
| 26 |
+
- size: m
|
| 27 |
+
- architecture: BERT encoder
|
| 28 |
+
- layers: 6
|
| 29 |
+
- hidden size: 768
|
| 30 |
+
- intermediate size: 3072
|
| 31 |
+
|
| 32 |
+
## Usage (mean pooled embeddings)
|
| 33 |
+
|
| 34 |
+
```python
|
| 35 |
+
from transformers import AutoTokenizer, AutoModel
|
| 36 |
+
import torch
|
| 37 |
+
|
| 38 |
+
repo = "dschulmeist/TiME-pt-m"
|
| 39 |
+
tok = AutoTokenizer.from_pretrained(repo)
|
| 40 |
+
mdl = AutoModel.from_pretrained(repo)
|
| 41 |
+
|
| 42 |
+
def mean_pool(last_hidden_state, attention_mask):
|
| 43 |
+
mask = attention_mask.unsqueeze(-1).type_as(last_hidden_state)
|
| 44 |
+
return (last_hidden_state * mask).sum(1) / mask.sum(1).clamp(min=1e-9)
|
| 45 |
+
|
| 46 |
+
inputs = tok(["example sentence"], padding=True, truncation=True, return_tensors="pt")
|
| 47 |
+
outputs = mdl(**inputs)
|
| 48 |
+
emb = mean_pool(outputs.last_hidden_state, inputs['attention_mask'])
|
| 49 |
+
print(emb.shape)
|
| 50 |
+
```
|