Upload folder using huggingface_hub
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- README.md +144 -0
- adapter_config.json +33 -0
- adapter_model.bin +3 -0
- checkpoint-110/README.md +202 -0
- checkpoint-110/adapter_config.json +33 -0
- checkpoint-110/adapter_model.safetensors +3 -0
- checkpoint-110/global_step110/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-110/global_step110/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-110/global_step110/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-110/global_step110/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-110/global_step110/mp_rank_00_model_states.pt +3 -0
- checkpoint-110/latest +1 -0
- checkpoint-110/rng_state_0.pth +3 -0
- checkpoint-110/rng_state_1.pth +3 -0
- checkpoint-110/rng_state_2.pth +3 -0
- checkpoint-110/rng_state_3.pth +3 -0
- checkpoint-110/scheduler.pt +3 -0
- checkpoint-110/trainer_state.json +855 -0
- checkpoint-110/training_args.bin +3 -0
- checkpoint-110/zero_to_fp32.py +592 -0
- checkpoint-46/README.md +202 -0
- checkpoint-46/adapter_config.json +33 -0
- checkpoint-46/adapter_model.safetensors +3 -0
- checkpoint-46/global_step46/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-46/global_step46/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-46/global_step46/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-46/global_step46/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-46/global_step46/mp_rank_00_model_states.pt +3 -0
- checkpoint-46/latest +1 -0
- checkpoint-46/rng_state_0.pth +3 -0
- checkpoint-46/rng_state_1.pth +3 -0
- checkpoint-46/rng_state_2.pth +3 -0
- checkpoint-46/rng_state_3.pth +3 -0
- checkpoint-46/scheduler.pt +3 -0
- checkpoint-46/trainer_state.json +375 -0
- checkpoint-46/training_args.bin +3 -0
- checkpoint-46/zero_to_fp32.py +592 -0
- checkpoint-55/README.md +202 -0
- checkpoint-55/adapter_config.json +33 -0
- checkpoint-55/adapter_model.safetensors +3 -0
- checkpoint-55/global_step55/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- checkpoint-55/global_step55/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- checkpoint-55/global_step55/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- checkpoint-55/global_step55/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- checkpoint-55/global_step55/mp_rank_00_model_states.pt +3 -0
- checkpoint-55/latest +1 -0
- checkpoint-55/rng_state_0.pth +3 -0
- checkpoint-55/rng_state_1.pth +3 -0
- checkpoint-55/rng_state_2.pth +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
merged/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
37 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
library_name: peft
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
base_model: google/gemma-2b-it
|
7 |
+
model-index:
|
8 |
+
- name: peft-gemma2b
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
|
13 |
+
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
|
14 |
+
<details><summary>See axolotl config</summary>
|
15 |
+
|
16 |
+
axolotl version: `0.4.0`
|
17 |
+
```yaml
|
18 |
+
# use google/gemma-7b if you have access
|
19 |
+
base_model: google/gemma-2b-it
|
20 |
+
model_type: AutoModelForCausalLM
|
21 |
+
tokenizer_type: AutoTokenizer
|
22 |
+
|
23 |
+
load_in_8bit: false
|
24 |
+
load_in_4bit: true
|
25 |
+
strict: false
|
26 |
+
|
27 |
+
# huggingface repo
|
28 |
+
datasets:
|
29 |
+
- path: ./python-oasst/combined_chunk_2.jsonl
|
30 |
+
type: oasst
|
31 |
+
val_set_size: 0.40
|
32 |
+
output_dir: ./out3
|
33 |
+
|
34 |
+
adapter: qlora
|
35 |
+
lora_r: 32
|
36 |
+
lora_alpha: 16
|
37 |
+
lora_dropout: 0.05
|
38 |
+
lora_target_linear: true
|
39 |
+
|
40 |
+
sequence_len: 4096
|
41 |
+
sample_packing: true
|
42 |
+
pad_to_sequence_len: true
|
43 |
+
|
44 |
+
wandb_project: gemma-2b-it
|
45 |
+
wandb_entity:
|
46 |
+
wandb_watch:
|
47 |
+
wandb_name:
|
48 |
+
wandb_log_model:
|
49 |
+
|
50 |
+
|
51 |
+
gradient_accumulation_steps: 3
|
52 |
+
micro_batch_size: 4
|
53 |
+
num_epochs: 2
|
54 |
+
optimizer: adamw_bnb_8bit
|
55 |
+
lr_scheduler: cosine
|
56 |
+
learning_rate: 0.0002
|
57 |
+
|
58 |
+
train_on_inputs: true
|
59 |
+
group_by_length: false
|
60 |
+
bf16: auto
|
61 |
+
fp16:
|
62 |
+
tf32: false
|
63 |
+
|
64 |
+
gradient_checkpointing: true
|
65 |
+
early_stopping_patience:
|
66 |
+
resume_from_checkpoint:
|
67 |
+
local_rank:
|
68 |
+
logging_steps: 1
|
69 |
+
xformers_attention:
|
70 |
+
flash_attention: true
|
71 |
+
|
72 |
+
warmup_ratio: 0.1
|
73 |
+
evals_per_epoch: 4
|
74 |
+
eval_table_size:
|
75 |
+
eval_max_new_tokens: 256
|
76 |
+
saves_per_epoch: 1
|
77 |
+
debug:
|
78 |
+
deepspeed: deepspeed_configs/zero1.json
|
79 |
+
weight_decay: 0.0
|
80 |
+
fsdp:
|
81 |
+
fsdp_config:
|
82 |
+
special_tokens:
|
83 |
+
|
84 |
+
```
|
85 |
+
|
86 |
+
</details><br>
|
87 |
+
|
88 |
+
# out3
|
89 |
+
|
90 |
+
This model is a fine-tuned version of [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) on the None dataset.
|
91 |
+
It achieves the following results on the evaluation set:
|
92 |
+
- Loss: 1.2430
|
93 |
+
|
94 |
+
## Model description
|
95 |
+
|
96 |
+
More information needed
|
97 |
+
|
98 |
+
## Intended uses & limitations
|
99 |
+
|
100 |
+
More information needed
|
101 |
+
|
102 |
+
## Training and evaluation data
|
103 |
+
|
104 |
+
More information needed
|
105 |
+
|
106 |
+
## Training procedure
|
107 |
+
|
108 |
+
### Training hyperparameters
|
109 |
+
|
110 |
+
The following hyperparameters were used during training:
|
111 |
+
- learning_rate: 0.0002
|
112 |
+
- train_batch_size: 4
|
113 |
+
- eval_batch_size: 4
|
114 |
+
- seed: 42
|
115 |
+
- distributed_type: multi-GPU
|
116 |
+
- num_devices: 4
|
117 |
+
- gradient_accumulation_steps: 3
|
118 |
+
- total_train_batch_size: 48
|
119 |
+
- total_eval_batch_size: 16
|
120 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
121 |
+
- lr_scheduler_type: cosine
|
122 |
+
- num_epochs: 2
|
123 |
+
|
124 |
+
### Training results
|
125 |
+
|
126 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
127 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
128 |
+
| 2.8926 | 0.02 | 1 | 2.7617 |
|
129 |
+
| 1.4502 | 0.26 | 12 | 1.4564 |
|
130 |
+
| 1.7617 | 0.52 | 24 | 1.3147 |
|
131 |
+
| 1.2051 | 0.78 | 36 | 1.2781 |
|
132 |
+
| 1.1353 | 1.01 | 48 | 1.2603 |
|
133 |
+
| 1.1787 | 1.28 | 60 | 1.2498 |
|
134 |
+
| 1.1416 | 1.54 | 72 | 1.2445 |
|
135 |
+
| 1.1606 | 1.8 | 84 | 1.2430 |
|
136 |
+
|
137 |
+
|
138 |
+
### Framework versions
|
139 |
+
|
140 |
+
- PEFT 0.9.0
|
141 |
+
- Transformers 4.38.0
|
142 |
+
- Pytorch 2.0.1+cu117
|
143 |
+
- Datasets 2.18.0
|
144 |
+
- Tokenizers 0.15.0
|
adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "google/gemma-2b-it",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": null,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 16,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 32,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"gate_proj",
|
23 |
+
"k_proj",
|
24 |
+
"v_proj",
|
25 |
+
"up_proj",
|
26 |
+
"down_proj",
|
27 |
+
"o_proj",
|
28 |
+
"q_proj"
|
29 |
+
],
|
30 |
+
"task_type": "CAUSAL_LM",
|
31 |
+
"use_dora": false,
|
32 |
+
"use_rslora": false
|
33 |
+
}
|
adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d7588baf2279a9decd1ae4ab0c5f6a03a9c05266fb6133696bade5771b733b19
|
3 |
+
size 78486205
|
checkpoint-110/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: google/gemma-2b-it
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.9.0
|
checkpoint-110/adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "google/gemma-2b-it",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": null,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 16,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 32,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"down_proj",
|
23 |
+
"k_proj",
|
24 |
+
"up_proj",
|
25 |
+
"q_proj",
|
26 |
+
"v_proj",
|
27 |
+
"o_proj",
|
28 |
+
"gate_proj"
|
29 |
+
],
|
30 |
+
"task_type": "CAUSAL_LM",
|
31 |
+
"use_dora": false,
|
32 |
+
"use_rslora": false
|
33 |
+
}
|
checkpoint-110/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:808d55cfc0779724020543b0b6f2b69c829ed1a3d5efff889a6f890b8c1139be
|
3 |
+
size 78480320
|
checkpoint-110/global_step110/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:747fb75ccb5a8b04441e183ba81925e338ded294ffbc1e5180c578f13a693e8a
|
3 |
+
size 58886423
|
checkpoint-110/global_step110/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f22f475db28959ac7679e36700754b955b7f57f0fcf514207b849ed6030ee1ea
|
3 |
+
size 58885463
|
checkpoint-110/global_step110/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea14779c099ee005ae1008ea80a4b0899c5154638318f569dc3d41ff21901e46
|
3 |
+
size 58886487
|
checkpoint-110/global_step110/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:939d4da58aa1f75a5c89110a76ec68e3e6badd2ef184d7382afa3dead722fbcb
|
3 |
+
size 58885527
|
checkpoint-110/global_step110/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3da1e771f664c7850a57b8954bc62cf37a8d56bbb7db3bfbc65c349981318c43
|
3 |
+
size 1159049457
|
checkpoint-110/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step110
|
checkpoint-110/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24089072fa967ddda688610baf8c506a25f5771b731a9a05c0736c8a961273a7
|
3 |
+
size 17655
|
checkpoint-110/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afe5f6f9755fd1245cedc10989cb0b4bb48aae05f1ccde8e9deb44e36aebc69b
|
3 |
+
size 17655
|
checkpoint-110/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d4e38510525d2854bf2b886708e15173236a90931480e673b0f69f8d620d8bf7
|
3 |
+
size 17655
|
checkpoint-110/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53876e4b015161dc8aaad7580a291ce19694f401e74bf98e8ea9b34a5b8866a2
|
3 |
+
size 17655
|
checkpoint-110/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fb173f58bc277f4540a71b9da714b6eab4897199fe96d39e8ced237b9480a43
|
3 |
+
size 627
|
checkpoint-110/trainer_state.json
ADDED
@@ -0,0 +1,855 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.9520958083832336,
|
5 |
+
"eval_steps": 14,
|
6 |
+
"global_step": 110,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.02,
|
13 |
+
"grad_norm": 0.866426735610868,
|
14 |
+
"learning_rate": 0.00019995921928281894,
|
15 |
+
"loss": 2.7031,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.02,
|
20 |
+
"eval_loss": 2.6663479804992676,
|
21 |
+
"eval_runtime": 69.9146,
|
22 |
+
"eval_samples_per_second": 285.62,
|
23 |
+
"eval_steps_per_second": 17.865,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.04,
|
28 |
+
"grad_norm": 0.8776710816784347,
|
29 |
+
"learning_rate": 0.00019983691039261357,
|
30 |
+
"loss": 2.6299,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.05,
|
35 |
+
"grad_norm": 0.9796444288699809,
|
36 |
+
"learning_rate": 0.00019963317308626914,
|
37 |
+
"loss": 2.3027,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.07,
|
42 |
+
"grad_norm": 1.1160859766420685,
|
43 |
+
"learning_rate": 0.00019934817353485501,
|
44 |
+
"loss": 2.0674,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.09,
|
49 |
+
"grad_norm": 1.1551321141536093,
|
50 |
+
"learning_rate": 0.0001989821441880933,
|
51 |
+
"loss": 1.7861,
|
52 |
+
"step": 5
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.11,
|
56 |
+
"grad_norm": 0.890274648186441,
|
57 |
+
"learning_rate": 0.00019853538358476932,
|
58 |
+
"loss": 1.6172,
|
59 |
+
"step": 6
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.13,
|
63 |
+
"grad_norm": 0.7807325938639237,
|
64 |
+
"learning_rate": 0.00019800825610923934,
|
65 |
+
"loss": 1.6323,
|
66 |
+
"step": 7
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.14,
|
70 |
+
"grad_norm": 0.7513090074948452,
|
71 |
+
"learning_rate": 0.00019740119169423337,
|
72 |
+
"loss": 1.6172,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.16,
|
77 |
+
"grad_norm": 0.6817700063779598,
|
78 |
+
"learning_rate": 0.00019671468547019573,
|
79 |
+
"loss": 1.5483,
|
80 |
+
"step": 9
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.18,
|
84 |
+
"grad_norm": 0.5485445966786001,
|
85 |
+
"learning_rate": 0.00019594929736144976,
|
86 |
+
"loss": 1.479,
|
87 |
+
"step": 10
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.2,
|
91 |
+
"grad_norm": 0.27041496308401886,
|
92 |
+
"learning_rate": 0.00019510565162951537,
|
93 |
+
"loss": 1.4292,
|
94 |
+
"step": 11
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.22,
|
98 |
+
"grad_norm": 0.24844480119928905,
|
99 |
+
"learning_rate": 0.00019418443636395248,
|
100 |
+
"loss": 1.4326,
|
101 |
+
"step": 12
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.23,
|
105 |
+
"grad_norm": 0.4516773777333339,
|
106 |
+
"learning_rate": 0.00019318640292114524,
|
107 |
+
"loss": 1.418,
|
108 |
+
"step": 13
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.25,
|
112 |
+
"grad_norm": 2.014260828449999,
|
113 |
+
"learning_rate": 0.000192112365311485,
|
114 |
+
"loss": 1.9883,
|
115 |
+
"step": 14
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.25,
|
119 |
+
"eval_loss": 1.441876769065857,
|
120 |
+
"eval_runtime": 71.2163,
|
121 |
+
"eval_samples_per_second": 280.399,
|
122 |
+
"eval_steps_per_second": 17.538,
|
123 |
+
"step": 14
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.27,
|
127 |
+
"grad_norm": 0.26474390032516393,
|
128 |
+
"learning_rate": 0.00019096319953545185,
|
129 |
+
"loss": 1.3955,
|
130 |
+
"step": 15
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 0.29,
|
134 |
+
"grad_norm": 0.22490458783426903,
|
135 |
+
"learning_rate": 0.00018973984286913584,
|
136 |
+
"loss": 1.376,
|
137 |
+
"step": 16
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.31,
|
141 |
+
"grad_norm": 0.33330700318335205,
|
142 |
+
"learning_rate": 0.00018844329309978145,
|
143 |
+
"loss": 1.3286,
|
144 |
+
"step": 17
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 0.32,
|
148 |
+
"grad_norm": 0.37492777208291783,
|
149 |
+
"learning_rate": 0.00018707460771197774,
|
150 |
+
"loss": 1.3359,
|
151 |
+
"step": 18
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 0.34,
|
155 |
+
"grad_norm": 0.29525135911036,
|
156 |
+
"learning_rate": 0.0001856349030251589,
|
157 |
+
"loss": 1.3198,
|
158 |
+
"step": 19
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.36,
|
162 |
+
"grad_norm": 0.22284214725380747,
|
163 |
+
"learning_rate": 0.00018412535328311814,
|
164 |
+
"loss": 1.3325,
|
165 |
+
"step": 20
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.38,
|
169 |
+
"grad_norm": 0.39903198098602605,
|
170 |
+
"learning_rate": 0.0001825471896962774,
|
171 |
+
"loss": 1.3252,
|
172 |
+
"step": 21
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"epoch": 0.4,
|
176 |
+
"grad_norm": 0.4164131128200096,
|
177 |
+
"learning_rate": 0.00018090169943749476,
|
178 |
+
"loss": 1.2842,
|
179 |
+
"step": 22
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 0.41,
|
183 |
+
"grad_norm": 0.2610111064228617,
|
184 |
+
"learning_rate": 0.00017919022459222752,
|
185 |
+
"loss": 1.2979,
|
186 |
+
"step": 23
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"epoch": 0.43,
|
190 |
+
"grad_norm": 0.2012045009785502,
|
191 |
+
"learning_rate": 0.00017741416106390826,
|
192 |
+
"loss": 1.2554,
|
193 |
+
"step": 24
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.45,
|
197 |
+
"grad_norm": 0.23300289011357986,
|
198 |
+
"learning_rate": 0.00017557495743542585,
|
199 |
+
"loss": 1.2461,
|
200 |
+
"step": 25
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"epoch": 0.47,
|
204 |
+
"grad_norm": 0.23652936705914454,
|
205 |
+
"learning_rate": 0.0001736741137876405,
|
206 |
+
"loss": 1.271,
|
207 |
+
"step": 26
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.49,
|
211 |
+
"grad_norm": 0.1925895084011206,
|
212 |
+
"learning_rate": 0.00017171318047589637,
|
213 |
+
"loss": 1.2515,
|
214 |
+
"step": 27
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"epoch": 0.5,
|
218 |
+
"grad_norm": 0.12096954328419277,
|
219 |
+
"learning_rate": 0.00016969375686552937,
|
220 |
+
"loss": 1.2461,
|
221 |
+
"step": 28
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.5,
|
225 |
+
"eval_loss": 1.3231805562973022,
|
226 |
+
"eval_runtime": 71.3812,
|
227 |
+
"eval_samples_per_second": 279.752,
|
228 |
+
"eval_steps_per_second": 17.498,
|
229 |
+
"step": 28
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"epoch": 0.52,
|
233 |
+
"grad_norm": 0.12448721999954601,
|
234 |
+
"learning_rate": 0.00016761749002740193,
|
235 |
+
"loss": 1.2446,
|
236 |
+
"step": 29
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.54,
|
240 |
+
"grad_norm": 0.21969944256734386,
|
241 |
+
"learning_rate": 0.00016548607339452853,
|
242 |
+
"loss": 1.2783,
|
243 |
+
"step": 30
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.56,
|
247 |
+
"grad_norm": 0.2172107697789349,
|
248 |
+
"learning_rate": 0.00016330124538088705,
|
249 |
+
"loss": 1.2461,
|
250 |
+
"step": 31
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"epoch": 0.57,
|
254 |
+
"grad_norm": 0.1547872862082663,
|
255 |
+
"learning_rate": 0.00016106478796354382,
|
256 |
+
"loss": 1.2241,
|
257 |
+
"step": 32
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 0.59,
|
261 |
+
"grad_norm": 0.08869884076741208,
|
262 |
+
"learning_rate": 0.00015877852522924732,
|
263 |
+
"loss": 1.1846,
|
264 |
+
"step": 33
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 0.61,
|
268 |
+
"grad_norm": 0.1538541877622166,
|
269 |
+
"learning_rate": 0.00015644432188667695,
|
270 |
+
"loss": 1.23,
|
271 |
+
"step": 34
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 0.63,
|
275 |
+
"grad_norm": 0.20399644873662537,
|
276 |
+
"learning_rate": 0.00015406408174555976,
|
277 |
+
"loss": 1.2114,
|
278 |
+
"step": 35
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.65,
|
282 |
+
"grad_norm": 0.19144417912447978,
|
283 |
+
"learning_rate": 0.0001516397461638962,
|
284 |
+
"loss": 1.2324,
|
285 |
+
"step": 36
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.66,
|
289 |
+
"grad_norm": 0.26912005474616185,
|
290 |
+
"learning_rate": 0.0001491732924645604,
|
291 |
+
"loss": 1.5522,
|
292 |
+
"step": 37
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"epoch": 0.68,
|
296 |
+
"grad_norm": 0.09943230167494302,
|
297 |
+
"learning_rate": 0.00014666673232256738,
|
298 |
+
"loss": 1.1973,
|
299 |
+
"step": 38
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 0.7,
|
303 |
+
"grad_norm": 0.12111451370899122,
|
304 |
+
"learning_rate": 0.00014412211012432212,
|
305 |
+
"loss": 1.1685,
|
306 |
+
"step": 39
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"epoch": 0.72,
|
310 |
+
"grad_norm": 0.13274421759806426,
|
311 |
+
"learning_rate": 0.00014154150130018866,
|
312 |
+
"loss": 1.1846,
|
313 |
+
"step": 40
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"epoch": 0.74,
|
317 |
+
"grad_norm": 0.12218551159116417,
|
318 |
+
"learning_rate": 0.00013892701063173918,
|
319 |
+
"loss": 1.2173,
|
320 |
+
"step": 41
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"epoch": 0.75,
|
324 |
+
"grad_norm": 0.09665309655921935,
|
325 |
+
"learning_rate": 0.0001362807705350641,
|
326 |
+
"loss": 1.2207,
|
327 |
+
"step": 42
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"epoch": 0.75,
|
331 |
+
"eval_loss": 1.2895056009292603,
|
332 |
+
"eval_runtime": 71.3954,
|
333 |
+
"eval_samples_per_second": 279.696,
|
334 |
+
"eval_steps_per_second": 17.494,
|
335 |
+
"step": 42
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 0.77,
|
339 |
+
"grad_norm": 0.10941681743668577,
|
340 |
+
"learning_rate": 0.00013360493932154302,
|
341 |
+
"loss": 1.1943,
|
342 |
+
"step": 43
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"epoch": 0.79,
|
346 |
+
"grad_norm": 0.13685075654053136,
|
347 |
+
"learning_rate": 0.00013090169943749476,
|
348 |
+
"loss": 1.1597,
|
349 |
+
"step": 44
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"epoch": 0.81,
|
353 |
+
"grad_norm": 0.12907173631699106,
|
354 |
+
"learning_rate": 0.00012817325568414297,
|
355 |
+
"loss": 1.1851,
|
356 |
+
"step": 45
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 0.83,
|
360 |
+
"grad_norm": 0.1036179369816153,
|
361 |
+
"learning_rate": 0.00012542183341934872,
|
362 |
+
"loss": 1.1987,
|
363 |
+
"step": 46
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"epoch": 0.84,
|
367 |
+
"grad_norm": 0.08667840513163542,
|
368 |
+
"learning_rate": 0.00012264967674257646,
|
369 |
+
"loss": 1.1724,
|
370 |
+
"step": 47
|
371 |
+
},
|
372 |
+
{
|
373 |
+
"epoch": 0.86,
|
374 |
+
"grad_norm": 0.1144689947654717,
|
375 |
+
"learning_rate": 0.00011985904666457455,
|
376 |
+
"loss": 1.1997,
|
377 |
+
"step": 48
|
378 |
+
},
|
379 |
+
{
|
380 |
+
"epoch": 0.88,
|
381 |
+
"grad_norm": 0.13847211768760592,
|
382 |
+
"learning_rate": 0.0001170522192632624,
|
383 |
+
"loss": 1.1602,
|
384 |
+
"step": 49
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"epoch": 0.9,
|
388 |
+
"grad_norm": 0.11095253849183417,
|
389 |
+
"learning_rate": 0.00011423148382732853,
|
390 |
+
"loss": 1.1758,
|
391 |
+
"step": 50
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 0.92,
|
395 |
+
"grad_norm": 0.08573841203966975,
|
396 |
+
"learning_rate": 0.00011139914098905406,
|
397 |
+
"loss": 1.1846,
|
398 |
+
"step": 51
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"epoch": 0.93,
|
402 |
+
"grad_norm": 0.0948235516667105,
|
403 |
+
"learning_rate": 0.00010855750084788398,
|
404 |
+
"loss": 1.1948,
|
405 |
+
"step": 52
|
406 |
+
},
|
407 |
+
{
|
408 |
+
"epoch": 0.95,
|
409 |
+
"grad_norm": 0.121781824636731,
|
410 |
+
"learning_rate": 0.00010570888108627681,
|
411 |
+
"loss": 1.1753,
|
412 |
+
"step": 53
|
413 |
+
},
|
414 |
+
{
|
415 |
+
"epoch": 0.97,
|
416 |
+
"grad_norm": 0.10546391970558401,
|
417 |
+
"learning_rate": 0.00010285560507936961,
|
418 |
+
"loss": 1.1699,
|
419 |
+
"step": 54
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"epoch": 0.99,
|
423 |
+
"grad_norm": 0.34233328008898944,
|
424 |
+
"learning_rate": 0.0001,
|
425 |
+
"loss": 1.5063,
|
426 |
+
"step": 55
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"epoch": 1.01,
|
430 |
+
"grad_norm": 0.11900909777508013,
|
431 |
+
"learning_rate": 9.71443949206304e-05,
|
432 |
+
"loss": 1.1479,
|
433 |
+
"step": 56
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"epoch": 1.01,
|
437 |
+
"eval_loss": 1.2747071981430054,
|
438 |
+
"eval_runtime": 71.4286,
|
439 |
+
"eval_samples_per_second": 279.566,
|
440 |
+
"eval_steps_per_second": 17.486,
|
441 |
+
"step": 56
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 1.02,
|
445 |
+
"grad_norm": 0.11736589205080973,
|
446 |
+
"learning_rate": 9.42911189137232e-05,
|
447 |
+
"loss": 1.1411,
|
448 |
+
"step": 57
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"epoch": 1.02,
|
452 |
+
"grad_norm": 0.12677764502316016,
|
453 |
+
"learning_rate": 9.144249915211605e-05,
|
454 |
+
"loss": 1.1514,
|
455 |
+
"step": 58
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"epoch": 1.04,
|
459 |
+
"grad_norm": 0.11697640877801936,
|
460 |
+
"learning_rate": 8.860085901094595e-05,
|
461 |
+
"loss": 1.144,
|
462 |
+
"step": 59
|
463 |
+
},
|
464 |
+
{
|
465 |
+
"epoch": 1.05,
|
466 |
+
"grad_norm": 0.10851474914032534,
|
467 |
+
"learning_rate": 8.57685161726715e-05,
|
468 |
+
"loss": 1.1538,
|
469 |
+
"step": 60
|
470 |
+
},
|
471 |
+
{
|
472 |
+
"epoch": 1.07,
|
473 |
+
"grad_norm": 0.10591523712985791,
|
474 |
+
"learning_rate": 8.294778073673762e-05,
|
475 |
+
"loss": 1.1675,
|
476 |
+
"step": 61
|
477 |
+
},
|
478 |
+
{
|
479 |
+
"epoch": 1.09,
|
480 |
+
"grad_norm": 0.10109697997845449,
|
481 |
+
"learning_rate": 8.014095333542548e-05,
|
482 |
+
"loss": 1.1528,
|
483 |
+
"step": 62
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"epoch": 1.11,
|
487 |
+
"grad_norm": 0.11774452860536459,
|
488 |
+
"learning_rate": 7.735032325742355e-05,
|
489 |
+
"loss": 1.144,
|
490 |
+
"step": 63
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"epoch": 1.13,
|
494 |
+
"grad_norm": 0.11052397113271337,
|
495 |
+
"learning_rate": 7.457816658065134e-05,
|
496 |
+
"loss": 1.1533,
|
497 |
+
"step": 64
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 1.14,
|
501 |
+
"grad_norm": 0.09932538763675618,
|
502 |
+
"learning_rate": 7.182674431585704e-05,
|
503 |
+
"loss": 1.1562,
|
504 |
+
"step": 65
|
505 |
+
},
|
506 |
+
{
|
507 |
+
"epoch": 1.16,
|
508 |
+
"grad_norm": 0.100642669752315,
|
509 |
+
"learning_rate": 6.909830056250527e-05,
|
510 |
+
"loss": 1.1504,
|
511 |
+
"step": 66
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"epoch": 1.18,
|
515 |
+
"grad_norm": 0.08717942179921322,
|
516 |
+
"learning_rate": 6.639506067845697e-05,
|
517 |
+
"loss": 1.1353,
|
518 |
+
"step": 67
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 1.2,
|
522 |
+
"grad_norm": 0.10484048248463712,
|
523 |
+
"learning_rate": 6.371922946493591e-05,
|
524 |
+
"loss": 1.1196,
|
525 |
+
"step": 68
|
526 |
+
},
|
527 |
+
{
|
528 |
+
"epoch": 1.22,
|
529 |
+
"grad_norm": 0.10322601363425112,
|
530 |
+
"learning_rate": 6.107298936826086e-05,
|
531 |
+
"loss": 1.1226,
|
532 |
+
"step": 69
|
533 |
+
},
|
534 |
+
{
|
535 |
+
"epoch": 1.23,
|
536 |
+
"grad_norm": 0.10689324440748724,
|
537 |
+
"learning_rate": 5.845849869981137e-05,
|
538 |
+
"loss": 1.1797,
|
539 |
+
"step": 70
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 1.23,
|
543 |
+
"eval_loss": 1.2690308094024658,
|
544 |
+
"eval_runtime": 71.4252,
|
545 |
+
"eval_samples_per_second": 279.579,
|
546 |
+
"eval_steps_per_second": 17.487,
|
547 |
+
"step": 70
|
548 |
+
},
|
549 |
+
{
|
550 |
+
"epoch": 1.25,
|
551 |
+
"grad_norm": 0.10301775684317682,
|
552 |
+
"learning_rate": 5.5877889875677845e-05,
|
553 |
+
"loss": 1.1265,
|
554 |
+
"step": 71
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 1.27,
|
558 |
+
"grad_norm": 0.08476164067920204,
|
559 |
+
"learning_rate": 5.333326767743263e-05,
|
560 |
+
"loss": 1.145,
|
561 |
+
"step": 72
|
562 |
+
},
|
563 |
+
{
|
564 |
+
"epoch": 1.29,
|
565 |
+
"grad_norm": 0.09070035744584001,
|
566 |
+
"learning_rate": 5.082670753543961e-05,
|
567 |
+
"loss": 1.1226,
|
568 |
+
"step": 73
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"epoch": 1.31,
|
572 |
+
"grad_norm": 0.09969553773787451,
|
573 |
+
"learning_rate": 4.836025383610382e-05,
|
574 |
+
"loss": 1.1323,
|
575 |
+
"step": 74
|
576 |
+
},
|
577 |
+
{
|
578 |
+
"epoch": 1.32,
|
579 |
+
"grad_norm": 0.1100883382765975,
|
580 |
+
"learning_rate": 4.593591825444028e-05,
|
581 |
+
"loss": 1.1353,
|
582 |
+
"step": 75
|
583 |
+
},
|
584 |
+
{
|
585 |
+
"epoch": 1.34,
|
586 |
+
"grad_norm": 0.10084037635805906,
|
587 |
+
"learning_rate": 4.355567811332311e-05,
|
588 |
+
"loss": 1.1689,
|
589 |
+
"step": 76
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"epoch": 1.36,
|
593 |
+
"grad_norm": 0.08865185209055175,
|
594 |
+
"learning_rate": 4.12214747707527e-05,
|
595 |
+
"loss": 1.1304,
|
596 |
+
"step": 77
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"epoch": 1.38,
|
600 |
+
"grad_norm": 0.08317004226644682,
|
601 |
+
"learning_rate": 3.893521203645618e-05,
|
602 |
+
"loss": 1.0801,
|
603 |
+
"step": 78
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 1.4,
|
607 |
+
"grad_norm": 0.08437511567708315,
|
608 |
+
"learning_rate": 3.669875461911297e-05,
|
609 |
+
"loss": 1.1265,
|
610 |
+
"step": 79
|
611 |
+
},
|
612 |
+
{
|
613 |
+
"epoch": 1.41,
|
614 |
+
"grad_norm": 0.08737931667441079,
|
615 |
+
"learning_rate": 3.45139266054715e-05,
|
616 |
+
"loss": 1.1206,
|
617 |
+
"step": 80
|
618 |
+
},
|
619 |
+
{
|
620 |
+
"epoch": 1.43,
|
621 |
+
"grad_norm": 0.09676132223503787,
|
622 |
+
"learning_rate": 3.238250997259808e-05,
|
623 |
+
"loss": 1.0879,
|
624 |
+
"step": 81
|
625 |
+
},
|
626 |
+
{
|
627 |
+
"epoch": 1.45,
|
628 |
+
"grad_norm": 0.3064914875240821,
|
629 |
+
"learning_rate": 3.030624313447067e-05,
|
630 |
+
"loss": 1.4707,
|
631 |
+
"step": 82
|
632 |
+
},
|
633 |
+
{
|
634 |
+
"epoch": 1.47,
|
635 |
+
"grad_norm": 0.10108431705762476,
|
636 |
+
"learning_rate": 2.828681952410366e-05,
|
637 |
+
"loss": 1.1489,
|
638 |
+
"step": 83
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"epoch": 1.49,
|
642 |
+
"grad_norm": 0.10356256932007075,
|
643 |
+
"learning_rate": 2.6325886212359498e-05,
|
644 |
+
"loss": 1.084,
|
645 |
+
"step": 84
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 1.49,
|
649 |
+
"eval_loss": 1.2660632133483887,
|
650 |
+
"eval_runtime": 71.4598,
|
651 |
+
"eval_samples_per_second": 279.444,
|
652 |
+
"eval_steps_per_second": 17.478,
|
653 |
+
"step": 84
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"epoch": 1.5,
|
657 |
+
"grad_norm": 0.11000673888436871,
|
658 |
+
"learning_rate": 2.4425042564574184e-05,
|
659 |
+
"loss": 1.1494,
|
660 |
+
"step": 85
|
661 |
+
},
|
662 |
+
{
|
663 |
+
"epoch": 1.52,
|
664 |
+
"grad_norm": 0.09066127881300992,
|
665 |
+
"learning_rate": 2.2585838936091754e-05,
|
666 |
+
"loss": 1.1572,
|
667 |
+
"step": 86
|
668 |
+
},
|
669 |
+
{
|
670 |
+
"epoch": 1.54,
|
671 |
+
"grad_norm": 0.09757831324550774,
|
672 |
+
"learning_rate": 2.0809775407772503e-05,
|
673 |
+
"loss": 1.103,
|
674 |
+
"step": 87
|
675 |
+
},
|
676 |
+
{
|
677 |
+
"epoch": 1.56,
|
678 |
+
"grad_norm": 0.0934233089422467,
|
679 |
+
"learning_rate": 1.9098300562505266e-05,
|
680 |
+
"loss": 1.1001,
|
681 |
+
"step": 88
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 1.57,
|
685 |
+
"grad_norm": 0.09106355313835601,
|
686 |
+
"learning_rate": 1.74528103037226e-05,
|
687 |
+
"loss": 1.1406,
|
688 |
+
"step": 89
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 1.59,
|
692 |
+
"grad_norm": 0.09454088595436297,
|
693 |
+
"learning_rate": 1.587464671688187e-05,
|
694 |
+
"loss": 1.1387,
|
695 |
+
"step": 90
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 1.61,
|
699 |
+
"grad_norm": 0.09689276747664,
|
700 |
+
"learning_rate": 1.4365096974841108e-05,
|
701 |
+
"loss": 1.1318,
|
702 |
+
"step": 91
|
703 |
+
},
|
704 |
+
{
|
705 |
+
"epoch": 1.63,
|
706 |
+
"grad_norm": 0.08987470798352144,
|
707 |
+
"learning_rate": 1.2925392288022298e-05,
|
708 |
+
"loss": 1.1592,
|
709 |
+
"step": 92
|
710 |
+
},
|
711 |
+
{
|
712 |
+
"epoch": 1.65,
|
713 |
+
"grad_norm": 0.08771103153086109,
|
714 |
+
"learning_rate": 1.1556706900218572e-05,
|
715 |
+
"loss": 1.1582,
|
716 |
+
"step": 93
|
717 |
+
},
|
718 |
+
{
|
719 |
+
"epoch": 1.66,
|
720 |
+
"grad_norm": 0.08740633683699849,
|
721 |
+
"learning_rate": 1.026015713086418e-05,
|
722 |
+
"loss": 1.1787,
|
723 |
+
"step": 94
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"epoch": 1.68,
|
727 |
+
"grad_norm": 0.08404626340301383,
|
728 |
+
"learning_rate": 9.036800464548157e-06,
|
729 |
+
"loss": 1.1362,
|
730 |
+
"step": 95
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 1.7,
|
734 |
+
"grad_norm": 0.08750778902246109,
|
735 |
+
"learning_rate": 7.887634688515e-06,
|
736 |
+
"loss": 1.1387,
|
737 |
+
"step": 96
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 1.72,
|
741 |
+
"grad_norm": 0.08581989813901233,
|
742 |
+
"learning_rate": 6.813597078854772e-06,
|
743 |
+
"loss": 1.1421,
|
744 |
+
"step": 97
|
745 |
+
},
|
746 |
+
{
|
747 |
+
"epoch": 1.74,
|
748 |
+
"grad_norm": 0.08777403515933545,
|
749 |
+
"learning_rate": 5.8155636360475385e-06,
|
750 |
+
"loss": 1.1035,
|
751 |
+
"step": 98
|
752 |
+
},
|
753 |
+
{
|
754 |
+
"epoch": 1.74,
|
755 |
+
"eval_loss": 1.2641561031341553,
|
756 |
+
"eval_runtime": 71.4805,
|
757 |
+
"eval_samples_per_second": 279.363,
|
758 |
+
"eval_steps_per_second": 17.473,
|
759 |
+
"step": 98
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"epoch": 1.75,
|
763 |
+
"grad_norm": 0.08385195939000219,
|
764 |
+
"learning_rate": 4.8943483704846475e-06,
|
765 |
+
"loss": 1.1113,
|
766 |
+
"step": 99
|
767 |
+
},
|
768 |
+
{
|
769 |
+
"epoch": 1.77,
|
770 |
+
"grad_norm": 0.08908998416660925,
|
771 |
+
"learning_rate": 4.050702638550275e-06,
|
772 |
+
"loss": 1.1104,
|
773 |
+
"step": 100
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"epoch": 1.79,
|
777 |
+
"grad_norm": 0.08249447233292928,
|
778 |
+
"learning_rate": 3.2853145298042953e-06,
|
779 |
+
"loss": 1.1396,
|
780 |
+
"step": 101
|
781 |
+
},
|
782 |
+
{
|
783 |
+
"epoch": 1.81,
|
784 |
+
"grad_norm": 0.08608973089588336,
|
785 |
+
"learning_rate": 2.5988083057666533e-06,
|
786 |
+
"loss": 1.1055,
|
787 |
+
"step": 102
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"epoch": 1.83,
|
791 |
+
"grad_norm": 0.09951373726217344,
|
792 |
+
"learning_rate": 1.9917438907606556e-06,
|
793 |
+
"loss": 1.1221,
|
794 |
+
"step": 103
|
795 |
+
},
|
796 |
+
{
|
797 |
+
"epoch": 1.84,
|
798 |
+
"grad_norm": 0.08532100595350145,
|
799 |
+
"learning_rate": 1.4646164152307018e-06,
|
800 |
+
"loss": 1.0898,
|
801 |
+
"step": 104
|
802 |
+
},
|
803 |
+
{
|
804 |
+
"epoch": 1.86,
|
805 |
+
"grad_norm": 0.08282306531770366,
|
806 |
+
"learning_rate": 1.0178558119067315e-06,
|
807 |
+
"loss": 1.1118,
|
808 |
+
"step": 105
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"epoch": 1.88,
|
812 |
+
"grad_norm": 0.08416795073468437,
|
813 |
+
"learning_rate": 6.518264651449779e-07,
|
814 |
+
"loss": 1.1133,
|
815 |
+
"step": 106
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 1.9,
|
819 |
+
"grad_norm": 0.08760805801842701,
|
820 |
+
"learning_rate": 3.6682691373086665e-07,
|
821 |
+
"loss": 1.123,
|
822 |
+
"step": 107
|
823 |
+
},
|
824 |
+
{
|
825 |
+
"epoch": 1.92,
|
826 |
+
"grad_norm": 0.08618073017190576,
|
827 |
+
"learning_rate": 1.630896073864352e-07,
|
828 |
+
"loss": 1.0981,
|
829 |
+
"step": 108
|
830 |
+
},
|
831 |
+
{
|
832 |
+
"epoch": 1.93,
|
833 |
+
"grad_norm": 0.0908365337693141,
|
834 |
+
"learning_rate": 4.078071718107701e-08,
|
835 |
+
"loss": 1.1328,
|
836 |
+
"step": 109
|
837 |
+
},
|
838 |
+
{
|
839 |
+
"epoch": 1.95,
|
840 |
+
"grad_norm": 0.09003969262620456,
|
841 |
+
"learning_rate": 0.0,
|
842 |
+
"loss": 1.1104,
|
843 |
+
"step": 110
|
844 |
+
}
|
845 |
+
],
|
846 |
+
"logging_steps": 1,
|
847 |
+
"max_steps": 110,
|
848 |
+
"num_input_tokens_seen": 0,
|
849 |
+
"num_train_epochs": 2,
|
850 |
+
"save_steps": 55,
|
851 |
+
"total_flos": 2.6221185296708403e+17,
|
852 |
+
"train_batch_size": 4,
|
853 |
+
"trial_name": null,
|
854 |
+
"trial_params": null
|
855 |
+
}
|
checkpoint-110/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:123d1fd699788f7d60d917b5964a4e0851773abfe7e74a3a42baed90eb8677c6
|
3 |
+
size 6331
|
checkpoint-110/zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-46/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: google/gemma-2b-it
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.9.0
|
checkpoint-46/adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "google/gemma-2b-it",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": null,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 16,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 32,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"gate_proj",
|
23 |
+
"k_proj",
|
24 |
+
"v_proj",
|
25 |
+
"up_proj",
|
26 |
+
"down_proj",
|
27 |
+
"o_proj",
|
28 |
+
"q_proj"
|
29 |
+
],
|
30 |
+
"task_type": "CAUSAL_LM",
|
31 |
+
"use_dora": false,
|
32 |
+
"use_rslora": false
|
33 |
+
}
|
checkpoint-46/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4f805062e6421d7c69a2ee547e3af8350f624451ce165140c7232181316db33
|
3 |
+
size 78480320
|
checkpoint-46/global_step46/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9852910ac2adb1970801337fce7443a3bfdcaeabe07d654cff61bf2c432cbb3d
|
3 |
+
size 58886423
|
checkpoint-46/global_step46/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c202b3d15fad6725b57469ab741165c4f095730417a3e390ce5fb29dda5a5c75
|
3 |
+
size 58885463
|
checkpoint-46/global_step46/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7f5dc5545b3f194373b58996d0aed9e1376e5a54254941eb23eb2b0aaee3a8e
|
3 |
+
size 58886487
|
checkpoint-46/global_step46/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ec4ee84e8c134757373034201b648cb6e00fb8cc5f98385d4f02971bf99516e0
|
3 |
+
size 58885527
|
checkpoint-46/global_step46/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83d32f1971fddca0d11f12821e2366f4b0767156570446e5cc7bb231abc22851
|
3 |
+
size 1159049457
|
checkpoint-46/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step46
|
checkpoint-46/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b165aaa144fad4f4fa49d6dd695add421ab6c181ffc890115a172d00266723ab
|
3 |
+
size 17655
|
checkpoint-46/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d430c8b2f065299cc8e2d4fdc64fdd296a0649dc1216084e10018c2c0f201921
|
3 |
+
size 17655
|
checkpoint-46/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e513afae097b3d69141e7a925b55bd2f6657df9a7840cf02b10d4263576d744
|
3 |
+
size 17655
|
checkpoint-46/rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d013a562702b25cfd982378c7c0866be0e8fda59f98cb265cc32ba235b5bd6a
|
3 |
+
size 17655
|
checkpoint-46/scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:761d7aba80bef53190f12e33a600d1e0cbb142bd0005601918622cc3b27ad6ff
|
3 |
+
size 627
|
checkpoint-46/trainer_state.json
ADDED
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 12,
|
6 |
+
"global_step": 46,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.02,
|
13 |
+
"grad_norm": 0.9959812474764307,
|
14 |
+
"learning_rate": 0.0001999417022366174,
|
15 |
+
"loss": 2.8926,
|
16 |
+
"step": 1
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.02,
|
20 |
+
"eval_loss": 2.7616989612579346,
|
21 |
+
"eval_runtime": 62.0214,
|
22 |
+
"eval_samples_per_second": 322.227,
|
23 |
+
"eval_steps_per_second": 20.154,
|
24 |
+
"step": 1
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.04,
|
28 |
+
"grad_norm": 0.9553562375664082,
|
29 |
+
"learning_rate": 0.00019976687691905393,
|
30 |
+
"loss": 2.7178,
|
31 |
+
"step": 2
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.07,
|
35 |
+
"grad_norm": 1.074690670043139,
|
36 |
+
"learning_rate": 0.00019947572788580947,
|
37 |
+
"loss": 2.3477,
|
38 |
+
"step": 3
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.09,
|
42 |
+
"grad_norm": 1.2607308881446835,
|
43 |
+
"learning_rate": 0.00019906859460363307,
|
44 |
+
"loss": 2.0869,
|
45 |
+
"step": 4
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.11,
|
49 |
+
"grad_norm": 1.5197691743409516,
|
50 |
+
"learning_rate": 0.00019854595177171968,
|
51 |
+
"loss": 1.8477,
|
52 |
+
"step": 5
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.13,
|
56 |
+
"grad_norm": 0.7112299977659389,
|
57 |
+
"learning_rate": 0.00019790840876823232,
|
58 |
+
"loss": 1.7227,
|
59 |
+
"step": 6
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.15,
|
63 |
+
"grad_norm": 0.7680093267515216,
|
64 |
+
"learning_rate": 0.00019715670893979414,
|
65 |
+
"loss": 1.6553,
|
66 |
+
"step": 7
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.17,
|
70 |
+
"grad_norm": 0.7744797513985666,
|
71 |
+
"learning_rate": 0.00019629172873477995,
|
72 |
+
"loss": 1.6455,
|
73 |
+
"step": 8
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.2,
|
77 |
+
"grad_norm": 0.735518802506217,
|
78 |
+
"learning_rate": 0.00019531447668141608,
|
79 |
+
"loss": 1.5508,
|
80 |
+
"step": 9
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.22,
|
84 |
+
"grad_norm": 0.4535717241942791,
|
85 |
+
"learning_rate": 0.00019422609221188207,
|
86 |
+
"loss": 1.5039,
|
87 |
+
"step": 10
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.24,
|
91 |
+
"grad_norm": 0.29477652700703394,
|
92 |
+
"learning_rate": 0.0001930278443337833,
|
93 |
+
"loss": 1.502,
|
94 |
+
"step": 11
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.26,
|
98 |
+
"grad_norm": 0.24434475566463373,
|
99 |
+
"learning_rate": 0.00019172113015054532,
|
100 |
+
"loss": 1.4502,
|
101 |
+
"step": 12
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.26,
|
105 |
+
"eval_loss": 1.456370234489441,
|
106 |
+
"eval_runtime": 63.0041,
|
107 |
+
"eval_samples_per_second": 317.202,
|
108 |
+
"eval_steps_per_second": 19.84,
|
109 |
+
"step": 12
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"epoch": 0.28,
|
113 |
+
"grad_norm": 0.45228370307484317,
|
114 |
+
"learning_rate": 0.00019030747323245327,
|
115 |
+
"loss": 1.4277,
|
116 |
+
"step": 13
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 0.3,
|
120 |
+
"grad_norm": 0.46523254227617566,
|
121 |
+
"learning_rate": 0.0001887885218402375,
|
122 |
+
"loss": 1.4097,
|
123 |
+
"step": 14
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 0.33,
|
127 |
+
"grad_norm": 0.2855872854921807,
|
128 |
+
"learning_rate": 0.00018716604700327514,
|
129 |
+
"loss": 1.3833,
|
130 |
+
"step": 15
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 0.35,
|
134 |
+
"grad_norm": 0.25447863105741503,
|
135 |
+
"learning_rate": 0.00018544194045464886,
|
136 |
+
"loss": 1.3652,
|
137 |
+
"step": 16
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.37,
|
141 |
+
"grad_norm": 0.3619444462250106,
|
142 |
+
"learning_rate": 0.0001836182124254711,
|
143 |
+
"loss": 1.3677,
|
144 |
+
"step": 17
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"epoch": 0.39,
|
148 |
+
"grad_norm": 0.36635956863370217,
|
149 |
+
"learning_rate": 0.0001816969893010442,
|
150 |
+
"loss": 1.332,
|
151 |
+
"step": 18
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 0.41,
|
155 |
+
"grad_norm": 0.39509330975297474,
|
156 |
+
"learning_rate": 0.00017968051114159047,
|
157 |
+
"loss": 1.3086,
|
158 |
+
"step": 19
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"epoch": 0.43,
|
162 |
+
"grad_norm": 0.3249913054000147,
|
163 |
+
"learning_rate": 0.000177571129070442,
|
164 |
+
"loss": 1.3071,
|
165 |
+
"step": 20
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"epoch": 0.46,
|
169 |
+
"grad_norm": 0.30914838660163285,
|
170 |
+
"learning_rate": 0.00017537130253273613,
|
171 |
+
"loss": 1.2729,
|
172 |
+
"step": 21
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"epoch": 0.48,
|
176 |
+
"grad_norm": 0.42289317853499514,
|
177 |
+
"learning_rate": 0.00017308359642781242,
|
178 |
+
"loss": 1.2773,
|
179 |
+
"step": 22
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"epoch": 0.5,
|
183 |
+
"grad_norm": 0.35414226064550436,
|
184 |
+
"learning_rate": 0.00017071067811865476,
|
185 |
+
"loss": 1.2417,
|
186 |
+
"step": 23
|
187 |
+
},
|
188 |
+
{
|
189 |
+
"epoch": 0.52,
|
190 |
+
"grad_norm": 1.5532132927649234,
|
191 |
+
"learning_rate": 0.00016825531432186543,
|
192 |
+
"loss": 1.7617,
|
193 |
+
"step": 24
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.52,
|
197 |
+
"eval_loss": 1.314684271812439,
|
198 |
+
"eval_runtime": 63.1261,
|
199 |
+
"eval_samples_per_second": 316.588,
|
200 |
+
"eval_steps_per_second": 19.802,
|
201 |
+
"step": 24
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"epoch": 0.54,
|
205 |
+
"grad_norm": 0.12961326680655122,
|
206 |
+
"learning_rate": 0.00016572036788179727,
|
207 |
+
"loss": 1.2183,
|
208 |
+
"step": 25
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"epoch": 0.57,
|
212 |
+
"grad_norm": 0.1963943275104468,
|
213 |
+
"learning_rate": 0.00016310879443260528,
|
214 |
+
"loss": 1.2222,
|
215 |
+
"step": 26
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"epoch": 0.59,
|
219 |
+
"grad_norm": 0.21010667932420385,
|
220 |
+
"learning_rate": 0.00016042363895210946,
|
221 |
+
"loss": 1.2163,
|
222 |
+
"step": 27
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"epoch": 0.61,
|
226 |
+
"grad_norm": 0.2259721381332128,
|
227 |
+
"learning_rate": 0.00015766803221148673,
|
228 |
+
"loss": 1.2217,
|
229 |
+
"step": 28
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"epoch": 0.63,
|
233 |
+
"grad_norm": 0.19095866752454876,
|
234 |
+
"learning_rate": 0.00015484518712493187,
|
235 |
+
"loss": 1.2212,
|
236 |
+
"step": 29
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"epoch": 0.65,
|
240 |
+
"grad_norm": 0.11496636776764421,
|
241 |
+
"learning_rate": 0.00015195839500354335,
|
242 |
+
"loss": 1.2212,
|
243 |
+
"step": 30
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.67,
|
247 |
+
"grad_norm": 0.12075046364081166,
|
248 |
+
"learning_rate": 0.00014901102171780174,
|
249 |
+
"loss": 1.1616,
|
250 |
+
"step": 31
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"epoch": 0.7,
|
254 |
+
"grad_norm": 0.21352779335608432,
|
255 |
+
"learning_rate": 0.00014600650377311522,
|
256 |
+
"loss": 1.2002,
|
257 |
+
"step": 32
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 0.72,
|
261 |
+
"grad_norm": 0.20188789347169253,
|
262 |
+
"learning_rate": 0.0001429483443030082,
|
263 |
+
"loss": 1.2236,
|
264 |
+
"step": 33
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"epoch": 0.74,
|
268 |
+
"grad_norm": 0.1547188722220508,
|
269 |
+
"learning_rate": 0.00013984010898462416,
|
270 |
+
"loss": 1.1826,
|
271 |
+
"step": 34
|
272 |
+
},
|
273 |
+
{
|
274 |
+
"epoch": 0.76,
|
275 |
+
"grad_norm": 0.11634196980431331,
|
276 |
+
"learning_rate": 0.00013668542188130566,
|
277 |
+
"loss": 1.209,
|
278 |
+
"step": 35
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"epoch": 0.78,
|
282 |
+
"grad_norm": 0.11144391112143442,
|
283 |
+
"learning_rate": 0.00013348796121709862,
|
284 |
+
"loss": 1.2051,
|
285 |
+
"step": 36
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"epoch": 0.78,
|
289 |
+
"eval_loss": 1.2780728340148926,
|
290 |
+
"eval_runtime": 63.136,
|
291 |
+
"eval_samples_per_second": 316.539,
|
292 |
+
"eval_steps_per_second": 19.799,
|
293 |
+
"step": 36
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"epoch": 0.8,
|
297 |
+
"grad_norm": 0.16076857117392804,
|
298 |
+
"learning_rate": 0.0001302514550881076,
|
299 |
+
"loss": 1.2046,
|
300 |
+
"step": 37
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"epoch": 0.83,
|
304 |
+
"grad_norm": 0.15687324678725567,
|
305 |
+
"learning_rate": 0.00012697967711570242,
|
306 |
+
"loss": 1.21,
|
307 |
+
"step": 38
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"epoch": 0.85,
|
311 |
+
"grad_norm": 0.4130016628721442,
|
312 |
+
"learning_rate": 0.00012367644204664468,
|
313 |
+
"loss": 1.5093,
|
314 |
+
"step": 39
|
315 |
+
},
|
316 |
+
{
|
317 |
+
"epoch": 0.87,
|
318 |
+
"grad_norm": 0.1343313559360696,
|
319 |
+
"learning_rate": 0.0001203456013052634,
|
320 |
+
"loss": 1.2051,
|
321 |
+
"step": 40
|
322 |
+
},
|
323 |
+
{
|
324 |
+
"epoch": 0.89,
|
325 |
+
"grad_norm": 0.11359323094812154,
|
326 |
+
"learning_rate": 0.00011699103850286669,
|
327 |
+
"loss": 1.2031,
|
328 |
+
"step": 41
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"epoch": 0.91,
|
332 |
+
"grad_norm": 0.09939941549415923,
|
333 |
+
"learning_rate": 0.00011361666490962468,
|
334 |
+
"loss": 1.1929,
|
335 |
+
"step": 42
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 0.93,
|
339 |
+
"grad_norm": 0.09916599553279144,
|
340 |
+
"learning_rate": 0.00011022641489420342,
|
341 |
+
"loss": 1.1748,
|
342 |
+
"step": 43
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"epoch": 0.96,
|
346 |
+
"grad_norm": 0.14209942605129547,
|
347 |
+
"learning_rate": 0.0001068242413364671,
|
348 |
+
"loss": 1.1665,
|
349 |
+
"step": 44
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"epoch": 0.98,
|
353 |
+
"grad_norm": 0.12442345202001188,
|
354 |
+
"learning_rate": 0.00010341411101859679,
|
355 |
+
"loss": 1.1768,
|
356 |
+
"step": 45
|
357 |
+
},
|
358 |
+
{
|
359 |
+
"epoch": 1.0,
|
360 |
+
"grad_norm": 0.26217962366852043,
|
361 |
+
"learning_rate": 0.0001,
|
362 |
+
"loss": 1.5122,
|
363 |
+
"step": 46
|
364 |
+
}
|
365 |
+
],
|
366 |
+
"logging_steps": 1,
|
367 |
+
"max_steps": 92,
|
368 |
+
"num_input_tokens_seen": 0,
|
369 |
+
"num_train_epochs": 2,
|
370 |
+
"save_steps": 46,
|
371 |
+
"total_flos": 1.096730008312873e+17,
|
372 |
+
"train_batch_size": 4,
|
373 |
+
"trial_name": null,
|
374 |
+
"trial_params": null
|
375 |
+
}
|
checkpoint-46/training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c43810cdb8f146f2245bb960f4cc7afe1dd2bc3429988aca22dc36faf28059d
|
3 |
+
size 6331
|
checkpoint-46/zero_to_fp32.py
ADDED
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _has_callable(obj, fn):
|
252 |
+
attr = getattr(obj, fn, None)
|
253 |
+
return callable(attr)
|
254 |
+
|
255 |
+
|
256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
257 |
+
param_shapes = zero_model_states[0].param_shapes
|
258 |
+
|
259 |
+
# Reconstruction protocol:
|
260 |
+
#
|
261 |
+
# XXX: document this
|
262 |
+
|
263 |
+
if debug:
|
264 |
+
for i in range(world_size):
|
265 |
+
for j in range(len(fp32_flat_groups[0])):
|
266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
267 |
+
|
268 |
+
# XXX: memory usage doubles here (zero2)
|
269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
270 |
+
merged_single_partition_of_fp32_groups = []
|
271 |
+
for i in range(num_param_groups):
|
272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
275 |
+
avail_numel = sum(
|
276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
277 |
+
|
278 |
+
if debug:
|
279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
281 |
+
# not asserting if there is a mismatch due to possible padding
|
282 |
+
print(f"Have {avail_numel} numels to process.")
|
283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
284 |
+
|
285 |
+
# params
|
286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
287 |
+
# out-of-core computing solution
|
288 |
+
total_numel = 0
|
289 |
+
total_params = 0
|
290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
291 |
+
offset = 0
|
292 |
+
avail_numel = full_single_fp32_vector.numel()
|
293 |
+
for name, shape in shapes.items():
|
294 |
+
|
295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
296 |
+
total_numel += unpartitioned_numel
|
297 |
+
total_params += 1
|
298 |
+
|
299 |
+
if debug:
|
300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
302 |
+
offset += unpartitioned_numel
|
303 |
+
|
304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
308 |
+
align_to = 2 * world_size
|
309 |
+
|
310 |
+
def zero2_align(x):
|
311 |
+
return align_to * math.ceil(x / align_to)
|
312 |
+
|
313 |
+
if debug:
|
314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
315 |
+
|
316 |
+
offset = zero2_align(offset)
|
317 |
+
avail_numel = zero2_align(avail_numel)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
# Sanity check
|
323 |
+
if offset != avail_numel:
|
324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
325 |
+
|
326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
327 |
+
|
328 |
+
|
329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
330 |
+
state_dict = OrderedDict()
|
331 |
+
|
332 |
+
# buffers
|
333 |
+
buffers = zero_model_states[0].buffers
|
334 |
+
state_dict.update(buffers)
|
335 |
+
if debug:
|
336 |
+
print(f"added {len(buffers)} buffers")
|
337 |
+
|
338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
339 |
+
|
340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
341 |
+
|
342 |
+
# recover shared parameters
|
343 |
+
for pair in zero_model_states[0].shared_params:
|
344 |
+
if pair[1] in state_dict:
|
345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
346 |
+
|
347 |
+
return state_dict
|
348 |
+
|
349 |
+
|
350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
351 |
+
remainder = unpartitioned_numel % world_size
|
352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
354 |
+
return partitioned_numel, padding_numel
|
355 |
+
|
356 |
+
|
357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
359 |
+
return
|
360 |
+
|
361 |
+
if debug:
|
362 |
+
for i in range(world_size):
|
363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
365 |
+
|
366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
367 |
+
wanted_params = len(frozen_param_shapes)
|
368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
372 |
+
|
373 |
+
total_params = 0
|
374 |
+
total_numel = 0
|
375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
376 |
+
total_params += 1
|
377 |
+
unpartitioned_numel = shape.numel()
|
378 |
+
total_numel += unpartitioned_numel
|
379 |
+
|
380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
382 |
+
|
383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
384 |
+
|
385 |
+
if debug:
|
386 |
+
print(
|
387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
388 |
+
)
|
389 |
+
|
390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
391 |
+
|
392 |
+
|
393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
394 |
+
param_shapes = zero_model_states[0].param_shapes
|
395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
398 |
+
|
399 |
+
# merge list of dicts, preserving order
|
400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
401 |
+
|
402 |
+
if debug:
|
403 |
+
for i in range(world_size):
|
404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
405 |
+
|
406 |
+
wanted_params = len(param_shapes)
|
407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
408 |
+
# not asserting if there is a mismatch due to possible padding
|
409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
412 |
+
|
413 |
+
# params
|
414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
415 |
+
# out-of-core computing solution
|
416 |
+
offset = 0
|
417 |
+
total_numel = 0
|
418 |
+
total_params = 0
|
419 |
+
for name, shape in param_shapes.items():
|
420 |
+
|
421 |
+
unpartitioned_numel = shape.numel()
|
422 |
+
total_numel += unpartitioned_numel
|
423 |
+
total_params += 1
|
424 |
+
|
425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
426 |
+
|
427 |
+
if debug:
|
428 |
+
print(
|
429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
430 |
+
)
|
431 |
+
|
432 |
+
# XXX: memory usage doubles here
|
433 |
+
state_dict[name] = torch.cat(
|
434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
436 |
+
offset += partitioned_numel
|
437 |
+
|
438 |
+
offset *= world_size
|
439 |
+
|
440 |
+
# Sanity check
|
441 |
+
if offset != avail_numel:
|
442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
443 |
+
|
444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
445 |
+
|
446 |
+
|
447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
448 |
+
state_dict = OrderedDict()
|
449 |
+
|
450 |
+
# buffers
|
451 |
+
buffers = zero_model_states[0].buffers
|
452 |
+
state_dict.update(buffers)
|
453 |
+
if debug:
|
454 |
+
print(f"added {len(buffers)} buffers")
|
455 |
+
|
456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
457 |
+
|
458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
459 |
+
|
460 |
+
# recover shared parameters
|
461 |
+
for pair in zero_model_states[0].shared_params:
|
462 |
+
if pair[1] in state_dict:
|
463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
464 |
+
|
465 |
+
return state_dict
|
466 |
+
|
467 |
+
|
468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
469 |
+
"""
|
470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
472 |
+
via a model hub.
|
473 |
+
|
474 |
+
Args:
|
475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
- pytorch ``state_dict``
|
480 |
+
|
481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
483 |
+
the checkpoint.
|
484 |
+
|
485 |
+
A typical usage might be ::
|
486 |
+
|
487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
488 |
+
# do the training and checkpoint saving
|
489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
490 |
+
model = model.cpu() # move to cpu
|
491 |
+
model.load_state_dict(state_dict)
|
492 |
+
# submit to model hub or save the model to share with others
|
493 |
+
|
494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
497 |
+
|
498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
499 |
+
|
500 |
+
"""
|
501 |
+
if tag is None:
|
502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
503 |
+
if os.path.isfile(latest_path):
|
504 |
+
with open(latest_path, 'r') as fd:
|
505 |
+
tag = fd.read().strip()
|
506 |
+
else:
|
507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
508 |
+
|
509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
510 |
+
|
511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
513 |
+
|
514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
515 |
+
|
516 |
+
|
517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
518 |
+
"""
|
519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
526 |
+
"""
|
527 |
+
|
528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
530 |
+
torch.save(state_dict, output_file)
|
531 |
+
|
532 |
+
|
533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
534 |
+
"""
|
535 |
+
1. Put the provided model to cpu
|
536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
537 |
+
3. Load it into the provided model
|
538 |
+
|
539 |
+
Args:
|
540 |
+
- ``model``: the model object to update
|
541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
- ``model`: modified model
|
546 |
+
|
547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
549 |
+
conveniently placed for you in the checkpoint folder.
|
550 |
+
|
551 |
+
A typical usage might be ::
|
552 |
+
|
553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
555 |
+
# submit to model hub or save the model to share with others
|
556 |
+
|
557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
560 |
+
|
561 |
+
"""
|
562 |
+
logger.info(f"Extracting fp32 weights")
|
563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
564 |
+
|
565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
566 |
+
model = model.cpu()
|
567 |
+
model.load_state_dict(state_dict, strict=False)
|
568 |
+
|
569 |
+
return model
|
570 |
+
|
571 |
+
|
572 |
+
if __name__ == "__main__":
|
573 |
+
|
574 |
+
parser = argparse.ArgumentParser()
|
575 |
+
parser.add_argument("checkpoint_dir",
|
576 |
+
type=str,
|
577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
578 |
+
parser.add_argument(
|
579 |
+
"output_file",
|
580 |
+
type=str,
|
581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
582 |
+
parser.add_argument("-t",
|
583 |
+
"--tag",
|
584 |
+
type=str,
|
585 |
+
default=None,
|
586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
588 |
+
args = parser.parse_args()
|
589 |
+
|
590 |
+
debug = args.debug
|
591 |
+
|
592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
checkpoint-55/README.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: google/gemma-2b-it
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
### Framework versions
|
201 |
+
|
202 |
+
- PEFT 0.9.0
|
checkpoint-55/adapter_config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "google/gemma-2b-it",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": null,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 16,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 32,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"down_proj",
|
23 |
+
"k_proj",
|
24 |
+
"up_proj",
|
25 |
+
"q_proj",
|
26 |
+
"v_proj",
|
27 |
+
"o_proj",
|
28 |
+
"gate_proj"
|
29 |
+
],
|
30 |
+
"task_type": "CAUSAL_LM",
|
31 |
+
"use_dora": false,
|
32 |
+
"use_rslora": false
|
33 |
+
}
|
checkpoint-55/adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d1edc3d855436f9861a042b87d27ef93f67d417404e2545f1ad57eda3ca69ff
|
3 |
+
size 78480320
|
checkpoint-55/global_step55/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2104a313d2624e7f4ac5e557b557aa19c29fe5d005f33e824b341a0e7eaa48e5
|
3 |
+
size 58886423
|
checkpoint-55/global_step55/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cefbaff50a0cc2ed1ad8d1066051df27eabbba05cb291eaeeeb18e78082d200f
|
3 |
+
size 58885463
|
checkpoint-55/global_step55/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07741327312405bbfdb835ca082556e9ec5dba02c874ac98c49b8475b8040f9d
|
3 |
+
size 58886487
|
checkpoint-55/global_step55/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c440b9c26a32e7e570f147fa8356307f748789400eaefc4b594c8c561c260c01
|
3 |
+
size 58885527
|
checkpoint-55/global_step55/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00511e35a1d4d0f7513c7ff2a4829d4c2204862cdc73180a03ad0d7b289ea754
|
3 |
+
size 1159049457
|
checkpoint-55/latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step55
|
checkpoint-55/rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8b2056fa67792ace30300b98f23b3ab3d644e32b902db24c352e0ab44404e78
|
3 |
+
size 17655
|
checkpoint-55/rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a10faa18b876f22999c0fe0f8b3b63b8b85749c7015ceec8ad57f04b111a0272
|
3 |
+
size 17655
|
checkpoint-55/rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:73b99b0efd4d198d3cc9d21ee39ad07baaefe8c2a4cc4854481ab7f40faa9d90
|
3 |
+
size 17655
|