dylanebert
commited on
Commit
·
161f2ca
1
Parent(s):
016512c
update with instantmesh pipeline
Browse files- model_index.json +2 -2
- pipeline.py +547 -0
- unet/config.json +0 -73
- unet/diffusion_pytorch_model.safetensors +0 -3
model_index.json
CHANGED
|
@@ -106,8 +106,8 @@
|
|
| 106 |
"CLIPTokenizer"
|
| 107 |
],
|
| 108 |
"unet": [
|
| 109 |
-
|
| 110 |
-
|
| 111 |
],
|
| 112 |
"vae": [
|
| 113 |
"diffusers",
|
|
|
|
| 106 |
"CLIPTokenizer"
|
| 107 |
],
|
| 108 |
"unet": [
|
| 109 |
+
null,
|
| 110 |
+
null
|
| 111 |
],
|
| 112 |
"vae": [
|
| 113 |
"diffusers",
|
pipeline.py
ADDED
|
@@ -0,0 +1,547 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any, Dict, Optional
|
| 2 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
| 3 |
+
|
| 4 |
+
import numpy
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.utils.checkpoint
|
| 8 |
+
import torch.distributed
|
| 9 |
+
import transformers
|
| 10 |
+
from collections import OrderedDict
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from torchvision import transforms
|
| 13 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
| 14 |
+
from diffusers.utils import BaseOutput
|
| 15 |
+
|
| 16 |
+
import rembg
|
| 17 |
+
from torchvision.transforms import v2
|
| 18 |
+
|
| 19 |
+
import diffusers
|
| 20 |
+
from diffusers import (
|
| 21 |
+
AutoencoderKL,
|
| 22 |
+
DDPMScheduler,
|
| 23 |
+
DiffusionPipeline,
|
| 24 |
+
EulerAncestralDiscreteScheduler,
|
| 25 |
+
UNet2DConditionModel,
|
| 26 |
+
)
|
| 27 |
+
from diffusers.image_processor import VaeImageProcessor
|
| 28 |
+
from diffusers.models.attention_processor import (
|
| 29 |
+
Attention,
|
| 30 |
+
AttnProcessor,
|
| 31 |
+
XFormersAttnProcessor,
|
| 32 |
+
AttnProcessor2_0,
|
| 33 |
+
)
|
| 34 |
+
from diffusers.utils.import_utils import is_xformers_available
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def to_rgb_image(maybe_rgba: Image.Image):
|
| 38 |
+
if maybe_rgba.mode == "RGB":
|
| 39 |
+
return maybe_rgba
|
| 40 |
+
elif maybe_rgba.mode == "RGBA":
|
| 41 |
+
rgba = maybe_rgba
|
| 42 |
+
img = numpy.random.randint(
|
| 43 |
+
255, 256, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8
|
| 44 |
+
)
|
| 45 |
+
img = Image.fromarray(img, "RGB")
|
| 46 |
+
img.paste(rgba, mask=rgba.getchannel("A"))
|
| 47 |
+
return img
|
| 48 |
+
else:
|
| 49 |
+
raise ValueError("Unsupported image type.", maybe_rgba.mode)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class ReferenceOnlyAttnProc(torch.nn.Module):
|
| 53 |
+
def __init__(self, chained_proc, enabled=False, name=None) -> None:
|
| 54 |
+
super().__init__()
|
| 55 |
+
self.enabled = enabled
|
| 56 |
+
self.chained_proc = chained_proc
|
| 57 |
+
self.name = name
|
| 58 |
+
|
| 59 |
+
def __call__(
|
| 60 |
+
self,
|
| 61 |
+
attn: Attention,
|
| 62 |
+
hidden_states,
|
| 63 |
+
encoder_hidden_states=None,
|
| 64 |
+
attention_mask=None,
|
| 65 |
+
mode="w",
|
| 66 |
+
ref_dict: dict = None,
|
| 67 |
+
is_cfg_guidance=False,
|
| 68 |
+
) -> Any:
|
| 69 |
+
if encoder_hidden_states is None:
|
| 70 |
+
encoder_hidden_states = hidden_states
|
| 71 |
+
if self.enabled and is_cfg_guidance:
|
| 72 |
+
res0 = self.chained_proc(
|
| 73 |
+
attn, hidden_states[:1], encoder_hidden_states[:1], attention_mask
|
| 74 |
+
)
|
| 75 |
+
hidden_states = hidden_states[1:]
|
| 76 |
+
encoder_hidden_states = encoder_hidden_states[1:]
|
| 77 |
+
if self.enabled:
|
| 78 |
+
if mode == "w":
|
| 79 |
+
ref_dict[self.name] = encoder_hidden_states
|
| 80 |
+
elif mode == "r":
|
| 81 |
+
encoder_hidden_states = torch.cat(
|
| 82 |
+
[encoder_hidden_states, ref_dict.pop(self.name)], dim=1
|
| 83 |
+
)
|
| 84 |
+
elif mode == "m":
|
| 85 |
+
encoder_hidden_states = torch.cat(
|
| 86 |
+
[encoder_hidden_states, ref_dict[self.name]], dim=1
|
| 87 |
+
)
|
| 88 |
+
else:
|
| 89 |
+
assert False, mode
|
| 90 |
+
res = self.chained_proc(
|
| 91 |
+
attn, hidden_states, encoder_hidden_states, attention_mask
|
| 92 |
+
)
|
| 93 |
+
if self.enabled and is_cfg_guidance:
|
| 94 |
+
res = torch.cat([res0, res])
|
| 95 |
+
return res
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class RefOnlyNoisedUNet(torch.nn.Module):
|
| 99 |
+
def __init__(
|
| 100 |
+
self,
|
| 101 |
+
unet: UNet2DConditionModel,
|
| 102 |
+
train_sched: DDPMScheduler,
|
| 103 |
+
val_sched: EulerAncestralDiscreteScheduler,
|
| 104 |
+
) -> None:
|
| 105 |
+
super().__init__()
|
| 106 |
+
self.unet = unet
|
| 107 |
+
self.train_sched = train_sched
|
| 108 |
+
self.val_sched = val_sched
|
| 109 |
+
|
| 110 |
+
unet_lora_attn_procs = dict()
|
| 111 |
+
for name, _ in unet.attn_processors.items():
|
| 112 |
+
if torch.__version__ >= "2.0":
|
| 113 |
+
default_attn_proc = AttnProcessor2_0()
|
| 114 |
+
elif is_xformers_available():
|
| 115 |
+
default_attn_proc = XFormersAttnProcessor()
|
| 116 |
+
else:
|
| 117 |
+
default_attn_proc = AttnProcessor()
|
| 118 |
+
unet_lora_attn_procs[name] = ReferenceOnlyAttnProc(
|
| 119 |
+
default_attn_proc, enabled=name.endswith("attn1.processor"), name=name
|
| 120 |
+
)
|
| 121 |
+
unet.set_attn_processor(unet_lora_attn_procs)
|
| 122 |
+
|
| 123 |
+
def __getattr__(self, name: str):
|
| 124 |
+
try:
|
| 125 |
+
return super().__getattr__(name)
|
| 126 |
+
except AttributeError:
|
| 127 |
+
return getattr(self.unet, name)
|
| 128 |
+
|
| 129 |
+
def forward_cond(
|
| 130 |
+
self,
|
| 131 |
+
noisy_cond_lat,
|
| 132 |
+
timestep,
|
| 133 |
+
encoder_hidden_states,
|
| 134 |
+
class_labels,
|
| 135 |
+
ref_dict,
|
| 136 |
+
is_cfg_guidance,
|
| 137 |
+
**kwargs,
|
| 138 |
+
):
|
| 139 |
+
if is_cfg_guidance:
|
| 140 |
+
encoder_hidden_states = encoder_hidden_states[1:]
|
| 141 |
+
class_labels = class_labels[1:]
|
| 142 |
+
self.unet(
|
| 143 |
+
noisy_cond_lat,
|
| 144 |
+
timestep,
|
| 145 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 146 |
+
class_labels=class_labels,
|
| 147 |
+
cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict),
|
| 148 |
+
**kwargs,
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
def forward(
|
| 152 |
+
self,
|
| 153 |
+
sample,
|
| 154 |
+
timestep,
|
| 155 |
+
encoder_hidden_states,
|
| 156 |
+
class_labels=None,
|
| 157 |
+
*args,
|
| 158 |
+
cross_attention_kwargs,
|
| 159 |
+
down_block_res_samples=None,
|
| 160 |
+
mid_block_res_sample=None,
|
| 161 |
+
**kwargs,
|
| 162 |
+
):
|
| 163 |
+
cond_lat = cross_attention_kwargs["cond_lat"]
|
| 164 |
+
is_cfg_guidance = cross_attention_kwargs.get("is_cfg_guidance", False)
|
| 165 |
+
noise = torch.randn_like(cond_lat)
|
| 166 |
+
if self.training:
|
| 167 |
+
noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep)
|
| 168 |
+
noisy_cond_lat = self.train_sched.scale_model_input(
|
| 169 |
+
noisy_cond_lat, timestep
|
| 170 |
+
)
|
| 171 |
+
else:
|
| 172 |
+
noisy_cond_lat = self.val_sched.add_noise(
|
| 173 |
+
cond_lat, noise, timestep.reshape(-1)
|
| 174 |
+
)
|
| 175 |
+
noisy_cond_lat = self.val_sched.scale_model_input(
|
| 176 |
+
noisy_cond_lat, timestep.reshape(-1)
|
| 177 |
+
)
|
| 178 |
+
ref_dict = {}
|
| 179 |
+
self.forward_cond(
|
| 180 |
+
noisy_cond_lat,
|
| 181 |
+
timestep,
|
| 182 |
+
encoder_hidden_states,
|
| 183 |
+
class_labels,
|
| 184 |
+
ref_dict,
|
| 185 |
+
is_cfg_guidance,
|
| 186 |
+
**kwargs,
|
| 187 |
+
)
|
| 188 |
+
weight_dtype = self.unet.dtype
|
| 189 |
+
return self.unet(
|
| 190 |
+
sample,
|
| 191 |
+
timestep,
|
| 192 |
+
encoder_hidden_states,
|
| 193 |
+
*args,
|
| 194 |
+
class_labels=class_labels,
|
| 195 |
+
cross_attention_kwargs=dict(
|
| 196 |
+
mode="r", ref_dict=ref_dict, is_cfg_guidance=is_cfg_guidance
|
| 197 |
+
),
|
| 198 |
+
down_block_additional_residuals=(
|
| 199 |
+
[sample.to(dtype=weight_dtype) for sample in down_block_res_samples]
|
| 200 |
+
if down_block_res_samples is not None
|
| 201 |
+
else None
|
| 202 |
+
),
|
| 203 |
+
mid_block_additional_residual=(
|
| 204 |
+
mid_block_res_sample.to(dtype=weight_dtype)
|
| 205 |
+
if mid_block_res_sample is not None
|
| 206 |
+
else None
|
| 207 |
+
),
|
| 208 |
+
**kwargs,
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
def scale_latents(latents):
|
| 213 |
+
latents = (latents - 0.22) * 0.75
|
| 214 |
+
return latents
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
def unscale_latents(latents):
|
| 218 |
+
latents = latents / 0.75 + 0.22
|
| 219 |
+
return latents
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
def scale_image(image):
|
| 223 |
+
image = image * 0.5 / 0.8
|
| 224 |
+
return image
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
def unscale_image(image):
|
| 228 |
+
image = image / 0.5 * 0.8
|
| 229 |
+
return image
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
class DepthControlUNet(torch.nn.Module):
|
| 233 |
+
def __init__(
|
| 234 |
+
self,
|
| 235 |
+
unet: RefOnlyNoisedUNet,
|
| 236 |
+
controlnet: Optional[diffusers.ControlNetModel] = None,
|
| 237 |
+
conditioning_scale=1.0,
|
| 238 |
+
) -> None:
|
| 239 |
+
super().__init__()
|
| 240 |
+
self.unet = unet
|
| 241 |
+
if controlnet is None:
|
| 242 |
+
self.controlnet = diffusers.ControlNetModel.from_unet(unet.unet)
|
| 243 |
+
else:
|
| 244 |
+
self.controlnet = controlnet
|
| 245 |
+
DefaultAttnProc = AttnProcessor2_0
|
| 246 |
+
if is_xformers_available():
|
| 247 |
+
DefaultAttnProc = XFormersAttnProcessor
|
| 248 |
+
self.controlnet.set_attn_processor(DefaultAttnProc())
|
| 249 |
+
self.conditioning_scale = conditioning_scale
|
| 250 |
+
|
| 251 |
+
def __getattr__(self, name: str):
|
| 252 |
+
try:
|
| 253 |
+
return super().__getattr__(name)
|
| 254 |
+
except AttributeError:
|
| 255 |
+
return getattr(self.unet, name)
|
| 256 |
+
|
| 257 |
+
def forward(
|
| 258 |
+
self,
|
| 259 |
+
sample,
|
| 260 |
+
timestep,
|
| 261 |
+
encoder_hidden_states,
|
| 262 |
+
class_labels=None,
|
| 263 |
+
*args,
|
| 264 |
+
cross_attention_kwargs: dict,
|
| 265 |
+
**kwargs,
|
| 266 |
+
):
|
| 267 |
+
cross_attention_kwargs = dict(cross_attention_kwargs)
|
| 268 |
+
control_depth = cross_attention_kwargs.pop("control_depth")
|
| 269 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
| 270 |
+
sample,
|
| 271 |
+
timestep,
|
| 272 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 273 |
+
controlnet_cond=control_depth,
|
| 274 |
+
conditioning_scale=self.conditioning_scale,
|
| 275 |
+
return_dict=False,
|
| 276 |
+
)
|
| 277 |
+
return self.unet(
|
| 278 |
+
sample,
|
| 279 |
+
timestep,
|
| 280 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 281 |
+
down_block_res_samples=down_block_res_samples,
|
| 282 |
+
mid_block_res_sample=mid_block_res_sample,
|
| 283 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
class ModuleListDict(torch.nn.Module):
|
| 288 |
+
def __init__(self, procs: dict) -> None:
|
| 289 |
+
super().__init__()
|
| 290 |
+
self.keys = sorted(procs.keys())
|
| 291 |
+
self.values = torch.nn.ModuleList(procs[k] for k in self.keys)
|
| 292 |
+
|
| 293 |
+
def __getitem__(self, key):
|
| 294 |
+
return self.values[self.keys.index(key)]
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
class SuperNet(torch.nn.Module):
|
| 298 |
+
def __init__(self, state_dict: Dict[str, torch.Tensor]):
|
| 299 |
+
super().__init__()
|
| 300 |
+
state_dict = OrderedDict((k, state_dict[k]) for k in sorted(state_dict.keys()))
|
| 301 |
+
self.layers = torch.nn.ModuleList(state_dict.values())
|
| 302 |
+
self.mapping = dict(enumerate(state_dict.keys()))
|
| 303 |
+
self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}
|
| 304 |
+
|
| 305 |
+
# .processor for unet, .self_attn for text encoder
|
| 306 |
+
self.split_keys = [".processor", ".self_attn"]
|
| 307 |
+
|
| 308 |
+
# we add a hook to state_dict() and load_state_dict() so that the
|
| 309 |
+
# naming fits with `unet.attn_processors`
|
| 310 |
+
def map_to(module, state_dict, *args, **kwargs):
|
| 311 |
+
new_state_dict = {}
|
| 312 |
+
for key, value in state_dict.items():
|
| 313 |
+
num = int(key.split(".")[1]) # 0 is always "layers"
|
| 314 |
+
new_key = key.replace(f"layers.{num}", module.mapping[num])
|
| 315 |
+
new_state_dict[new_key] = value
|
| 316 |
+
|
| 317 |
+
return new_state_dict
|
| 318 |
+
|
| 319 |
+
def remap_key(key, state_dict):
|
| 320 |
+
for k in self.split_keys:
|
| 321 |
+
if k in key:
|
| 322 |
+
return key.split(k)[0] + k
|
| 323 |
+
return key.split(".")[0]
|
| 324 |
+
|
| 325 |
+
def map_from(module, state_dict, *args, **kwargs):
|
| 326 |
+
all_keys = list(state_dict.keys())
|
| 327 |
+
for key in all_keys:
|
| 328 |
+
replace_key = remap_key(key, state_dict)
|
| 329 |
+
new_key = key.replace(
|
| 330 |
+
replace_key, f"layers.{module.rev_mapping[replace_key]}"
|
| 331 |
+
)
|
| 332 |
+
state_dict[new_key] = state_dict[key]
|
| 333 |
+
del state_dict[key]
|
| 334 |
+
|
| 335 |
+
self._register_state_dict_hook(map_to)
|
| 336 |
+
self._register_load_state_dict_pre_hook(map_from, with_module=True)
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
class Zero123PlusPipelineOutput(BaseOutput):
|
| 340 |
+
images: torch.Tensor
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
class Zero123PlusPipeline(diffusers.StableDiffusionPipeline):
|
| 344 |
+
tokenizer: transformers.CLIPTokenizer
|
| 345 |
+
text_encoder: transformers.CLIPTextModel
|
| 346 |
+
vision_encoder: transformers.CLIPVisionModelWithProjection
|
| 347 |
+
|
| 348 |
+
feature_extractor_clip: transformers.CLIPImageProcessor
|
| 349 |
+
unet: UNet2DConditionModel
|
| 350 |
+
scheduler: diffusers.schedulers.KarrasDiffusionSchedulers
|
| 351 |
+
|
| 352 |
+
vae: AutoencoderKL
|
| 353 |
+
ramping: nn.Linear
|
| 354 |
+
|
| 355 |
+
feature_extractor_vae: transformers.CLIPImageProcessor
|
| 356 |
+
|
| 357 |
+
depth_transforms_multi = transforms.Compose(
|
| 358 |
+
[transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
def __init__(
|
| 362 |
+
self,
|
| 363 |
+
vae: AutoencoderKL,
|
| 364 |
+
text_encoder: CLIPTextModel,
|
| 365 |
+
tokenizer: CLIPTokenizer,
|
| 366 |
+
unet: UNet2DConditionModel,
|
| 367 |
+
scheduler: KarrasDiffusionSchedulers,
|
| 368 |
+
vision_encoder: transformers.CLIPVisionModelWithProjection,
|
| 369 |
+
feature_extractor_clip: CLIPImageProcessor,
|
| 370 |
+
feature_extractor_vae: CLIPImageProcessor,
|
| 371 |
+
ramping_coefficients: Optional[list] = None,
|
| 372 |
+
safety_checker=None,
|
| 373 |
+
):
|
| 374 |
+
DiffusionPipeline.__init__(self)
|
| 375 |
+
|
| 376 |
+
self.register_modules(
|
| 377 |
+
vae=vae,
|
| 378 |
+
text_encoder=text_encoder,
|
| 379 |
+
tokenizer=tokenizer,
|
| 380 |
+
unet=unet,
|
| 381 |
+
scheduler=scheduler,
|
| 382 |
+
safety_checker=None,
|
| 383 |
+
vision_encoder=vision_encoder,
|
| 384 |
+
feature_extractor_clip=feature_extractor_clip,
|
| 385 |
+
feature_extractor_vae=feature_extractor_vae,
|
| 386 |
+
)
|
| 387 |
+
self.register_to_config(ramping_coefficients=ramping_coefficients)
|
| 388 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
| 389 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 390 |
+
|
| 391 |
+
def prepare(self):
|
| 392 |
+
train_sched = DDPMScheduler.from_config(self.scheduler.config)
|
| 393 |
+
if isinstance(self.unet, UNet2DConditionModel):
|
| 394 |
+
self.unet = RefOnlyNoisedUNet(self.unet, train_sched, self.scheduler).eval()
|
| 395 |
+
|
| 396 |
+
def add_controlnet(
|
| 397 |
+
self,
|
| 398 |
+
controlnet: Optional[diffusers.ControlNetModel] = None,
|
| 399 |
+
conditioning_scale=1.0,
|
| 400 |
+
):
|
| 401 |
+
self.prepare()
|
| 402 |
+
self.unet = DepthControlUNet(self.unet, controlnet, conditioning_scale)
|
| 403 |
+
return SuperNet(OrderedDict([("controlnet", self.unet.controlnet)]))
|
| 404 |
+
|
| 405 |
+
def encode_condition_image(self, image: torch.Tensor):
|
| 406 |
+
image = self.vae.encode(image).latent_dist.sample()
|
| 407 |
+
return image
|
| 408 |
+
|
| 409 |
+
@torch.no_grad()
|
| 410 |
+
def __call__(
|
| 411 |
+
self,
|
| 412 |
+
image: Image.Image = None,
|
| 413 |
+
prompt="",
|
| 414 |
+
*args,
|
| 415 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 416 |
+
guidance_scale=4.0,
|
| 417 |
+
depth_image: Image.Image = None,
|
| 418 |
+
output_type: Optional[str] = "pil",
|
| 419 |
+
width=640,
|
| 420 |
+
height=960,
|
| 421 |
+
num_inference_steps=28,
|
| 422 |
+
return_dict=True,
|
| 423 |
+
**kwargs,
|
| 424 |
+
):
|
| 425 |
+
self.prepare()
|
| 426 |
+
if image is None:
|
| 427 |
+
raise ValueError(
|
| 428 |
+
"Inputting embeddings not supported for this pipeline. Please pass an image."
|
| 429 |
+
)
|
| 430 |
+
assert not isinstance(image, torch.Tensor)
|
| 431 |
+
|
| 432 |
+
image = rembg.remove(image)
|
| 433 |
+
|
| 434 |
+
image = numpy.array(image)
|
| 435 |
+
alpha = numpy.where(image[..., 3] > 0)
|
| 436 |
+
y1, y2, x1, x2 = (
|
| 437 |
+
alpha[0].min(),
|
| 438 |
+
alpha[0].max(),
|
| 439 |
+
alpha[1].min(),
|
| 440 |
+
alpha[1].max(),
|
| 441 |
+
)
|
| 442 |
+
fg = image[y1:y2, x1:x2]
|
| 443 |
+
size = max(fg.shape[0], fg.shape[1])
|
| 444 |
+
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
|
| 445 |
+
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
|
| 446 |
+
image = numpy.pad(
|
| 447 |
+
fg,
|
| 448 |
+
((ph0, ph1), (pw0, pw1), (0, 0)),
|
| 449 |
+
mode="constant",
|
| 450 |
+
constant_values=((0, 0), (0, 0), (0, 0)),
|
| 451 |
+
)
|
| 452 |
+
|
| 453 |
+
new_size = int(image.shape[0] / 0.85)
|
| 454 |
+
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
|
| 455 |
+
ph1, pw1 = new_size - size - ph0, new_size - size - pw0
|
| 456 |
+
image = numpy.pad(
|
| 457 |
+
image,
|
| 458 |
+
((ph0, ph1), (pw0, pw1), (0, 0)),
|
| 459 |
+
mode="constant",
|
| 460 |
+
constant_values=((0, 0), (0, 0), (0, 0)),
|
| 461 |
+
)
|
| 462 |
+
image = Image.fromarray(image)
|
| 463 |
+
|
| 464 |
+
# images = mv_pipeline(image).images[0]
|
| 465 |
+
|
| 466 |
+
image = to_rgb_image(image)
|
| 467 |
+
image_1 = self.feature_extractor_vae(
|
| 468 |
+
images=image, return_tensors="pt"
|
| 469 |
+
).pixel_values
|
| 470 |
+
image_2 = self.feature_extractor_clip(
|
| 471 |
+
images=image, return_tensors="pt"
|
| 472 |
+
).pixel_values
|
| 473 |
+
if depth_image is not None and hasattr(self.unet, "controlnet"):
|
| 474 |
+
depth_image = to_rgb_image(depth_image)
|
| 475 |
+
depth_image = self.depth_transforms_multi(depth_image).to(
|
| 476 |
+
device=self.unet.controlnet.device, dtype=self.unet.controlnet.dtype
|
| 477 |
+
)
|
| 478 |
+
image = image_1.to(device=self.vae.device, dtype=self.vae.dtype)
|
| 479 |
+
image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype)
|
| 480 |
+
cond_lat = self.encode_condition_image(image)
|
| 481 |
+
if guidance_scale > 1:
|
| 482 |
+
negative_lat = self.encode_condition_image(torch.zeros_like(image))
|
| 483 |
+
cond_lat = torch.cat([negative_lat, cond_lat])
|
| 484 |
+
encoded = self.vision_encoder(image_2, output_hidden_states=False)
|
| 485 |
+
global_embeds = encoded.image_embeds
|
| 486 |
+
global_embeds = global_embeds.unsqueeze(-2)
|
| 487 |
+
|
| 488 |
+
if hasattr(self, "encode_prompt"):
|
| 489 |
+
encoder_hidden_states = self.encode_prompt(
|
| 490 |
+
prompt, self.device, num_images_per_prompt, False
|
| 491 |
+
)[0]
|
| 492 |
+
else:
|
| 493 |
+
encoder_hidden_states = self._encode_prompt(
|
| 494 |
+
prompt, self.device, num_images_per_prompt, False
|
| 495 |
+
)
|
| 496 |
+
ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1)
|
| 497 |
+
encoder_hidden_states = encoder_hidden_states + global_embeds * ramp
|
| 498 |
+
cak = dict(cond_lat=cond_lat)
|
| 499 |
+
if hasattr(self.unet, "controlnet"):
|
| 500 |
+
cak["control_depth"] = depth_image
|
| 501 |
+
latents: torch.Tensor = (
|
| 502 |
+
super()
|
| 503 |
+
.__call__(
|
| 504 |
+
None,
|
| 505 |
+
*args,
|
| 506 |
+
cross_attention_kwargs=cak,
|
| 507 |
+
guidance_scale=guidance_scale,
|
| 508 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 509 |
+
prompt_embeds=encoder_hidden_states,
|
| 510 |
+
num_inference_steps=num_inference_steps,
|
| 511 |
+
output_type="latent",
|
| 512 |
+
width=width,
|
| 513 |
+
height=height,
|
| 514 |
+
**kwargs,
|
| 515 |
+
)
|
| 516 |
+
.images
|
| 517 |
+
)
|
| 518 |
+
latents = unscale_latents(latents)
|
| 519 |
+
if not output_type == "latent":
|
| 520 |
+
image = unscale_image(
|
| 521 |
+
self.vae.decode(
|
| 522 |
+
latents / self.vae.config.scaling_factor, return_dict=False
|
| 523 |
+
)[0]
|
| 524 |
+
)
|
| 525 |
+
else:
|
| 526 |
+
image = latents
|
| 527 |
+
|
| 528 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 529 |
+
if not return_dict:
|
| 530 |
+
return (image,)
|
| 531 |
+
|
| 532 |
+
images = numpy.asarray(image[0], dtype=numpy.float32) / 255.0
|
| 533 |
+
images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float()
|
| 534 |
+
|
| 535 |
+
n, m = 3, 2
|
| 536 |
+
c, h, w = images.shape
|
| 537 |
+
images = (
|
| 538 |
+
images.view(c, n, h // n, m, w // m).permute(1, 3, 0, 2, 4).contiguous()
|
| 539 |
+
)
|
| 540 |
+
images = images.view(n * m, c, h // n, w // m)
|
| 541 |
+
|
| 542 |
+
images = images.unsqueeze(0)
|
| 543 |
+
images = v2.functional.resize(
|
| 544 |
+
images, 320, interpolation=3, antialias=True
|
| 545 |
+
).clamp(0, 1)
|
| 546 |
+
|
| 547 |
+
return Zero123PlusPipelineOutput(images=images)
|
unet/config.json
DELETED
|
@@ -1,73 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"_class_name": "UNet2DConditionModel",
|
| 3 |
-
"_diffusers_version": "0.30.3",
|
| 4 |
-
"_name_or_path": "/home/dylan/.cache/huggingface/hub/models--sudo-ai--zero123plus-v1.2/snapshots/2da07e89919e1a130c9b5add1584c70c7aa065fd/unet",
|
| 5 |
-
"act_fn": "silu",
|
| 6 |
-
"addition_embed_type": null,
|
| 7 |
-
"addition_embed_type_num_heads": 64,
|
| 8 |
-
"addition_time_embed_dim": null,
|
| 9 |
-
"attention_head_dim": [
|
| 10 |
-
5,
|
| 11 |
-
10,
|
| 12 |
-
20,
|
| 13 |
-
20
|
| 14 |
-
],
|
| 15 |
-
"attention_type": "default",
|
| 16 |
-
"block_out_channels": [
|
| 17 |
-
320,
|
| 18 |
-
640,
|
| 19 |
-
1280,
|
| 20 |
-
1280
|
| 21 |
-
],
|
| 22 |
-
"center_input_sample": false,
|
| 23 |
-
"class_embed_type": null,
|
| 24 |
-
"class_embeddings_concat": false,
|
| 25 |
-
"conv_in_kernel": 3,
|
| 26 |
-
"conv_out_kernel": 3,
|
| 27 |
-
"cross_attention_dim": 1024,
|
| 28 |
-
"cross_attention_norm": null,
|
| 29 |
-
"down_block_types": [
|
| 30 |
-
"CrossAttnDownBlock2D",
|
| 31 |
-
"CrossAttnDownBlock2D",
|
| 32 |
-
"CrossAttnDownBlock2D",
|
| 33 |
-
"DownBlock2D"
|
| 34 |
-
],
|
| 35 |
-
"downsample_padding": 1,
|
| 36 |
-
"dropout": 0.0,
|
| 37 |
-
"dual_cross_attention": false,
|
| 38 |
-
"encoder_hid_dim": null,
|
| 39 |
-
"encoder_hid_dim_type": null,
|
| 40 |
-
"flip_sin_to_cos": true,
|
| 41 |
-
"freq_shift": 0,
|
| 42 |
-
"in_channels": 4,
|
| 43 |
-
"layers_per_block": 2,
|
| 44 |
-
"mid_block_only_cross_attention": null,
|
| 45 |
-
"mid_block_scale_factor": 1,
|
| 46 |
-
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
| 47 |
-
"norm_eps": 1e-05,
|
| 48 |
-
"norm_num_groups": 32,
|
| 49 |
-
"num_attention_heads": null,
|
| 50 |
-
"num_class_embeds": null,
|
| 51 |
-
"only_cross_attention": false,
|
| 52 |
-
"out_channels": 4,
|
| 53 |
-
"projection_class_embeddings_input_dim": null,
|
| 54 |
-
"resnet_out_scale_factor": 1.0,
|
| 55 |
-
"resnet_skip_time_act": false,
|
| 56 |
-
"resnet_time_scale_shift": "default",
|
| 57 |
-
"reverse_transformer_layers_per_block": null,
|
| 58 |
-
"sample_size": 96,
|
| 59 |
-
"time_cond_proj_dim": null,
|
| 60 |
-
"time_embedding_act_fn": null,
|
| 61 |
-
"time_embedding_dim": null,
|
| 62 |
-
"time_embedding_type": "positional",
|
| 63 |
-
"timestep_post_act": null,
|
| 64 |
-
"transformer_layers_per_block": 1,
|
| 65 |
-
"up_block_types": [
|
| 66 |
-
"UpBlock2D",
|
| 67 |
-
"CrossAttnUpBlock2D",
|
| 68 |
-
"CrossAttnUpBlock2D",
|
| 69 |
-
"CrossAttnUpBlock2D"
|
| 70 |
-
],
|
| 71 |
-
"upcast_attention": false,
|
| 72 |
-
"use_linear_projection": true
|
| 73 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
unet/diffusion_pytorch_model.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:c4cba18336cfeb369d18dca0b1af3b9268302d828d7eee871d22074d08b91b33
|
| 3 |
-
size 1731904736
|
|
|
|
|
|
|
|
|
|
|
|