diff --git "a/scores/Qwen3-30B-A3B-pruned-IQ3_M.md" "b/scores/Qwen3-30B-A3B-pruned-IQ3_M.md" new file mode 100644--- /dev/null +++ "b/scores/Qwen3-30B-A3B-pruned-IQ3_M.md" @@ -0,0 +1,1653 @@ +# Qwen3-30B-A3B-IQ3_M.gguf - GGUF Internal File Dump + +- Endian: LITTLE endian + +## Key Value Metadata Store + +There are 45 key-value pairs in this file + +| POS | TYPE | Count | Key | Value | +|----:|:---------|-------:|:------------------------------------------|:--------------------------------------------------------------------| +| 1 | UINT32 | 1 | GGUF.version | 3 | +| 2 | UINT64 | 1 | GGUF.tensor_count | 555 | +| 3 | UINT64 | 1 | GGUF.kv_count | 42 | +| 4 | STRING | 1 | general.architecture | `qwen3moe` | +| 5 | STRING | 1 | general.type | `model` | +| 6 | STRING | 1 | general.name | `Qwen3 30B A3B` | +| 7 | STRING | 1 | general.basename | `Qwen3` | +| 8 | STRING | 1 | general.size_label | `30B-A3B` | +| 9 | STRING | 1 | general.license | `apache-2.0` | +| 10 | STRING | 1 | general.license.link | `https://huggingface.co/Qwen/Qwen3-30B-A3B/blob/main/LICENSE` | +| 11 | UINT32 | 1 | general.base_model.count | 1 | +| 12 | STRING | 1 | general.base_model.0.name | `Qwen3 30B A3B Base` | +| 13 | STRING | 1 | general.base_model.0.organization | `Qwen` | +| 14 | STRING | 1 | general.base_model.0.repo_url | `https://huggingface.co/Qwen/Qwen3-30B-A3B-Base` | +| 15 | [STRING] | 1 | general.tags | [ `text-generation` ] | +| 16 | UINT32 | 1 | qwen3moe.context_length | 40960 | +| 17 | UINT32 | 1 | qwen3moe.embedding_length | 2048 | +| 18 | UINT32 | 1 | qwen3moe.feed_forward_length | 6144 | +| 19 | UINT32 | 1 | qwen3moe.attention.head_count | 32 | +| 20 | UINT32 | 1 | qwen3moe.attention.head_count_kv | 4 | +| 21 | FLOAT32 | 1 | qwen3moe.rope.freq_base | 1000000.0 | +| 22 | FLOAT32 | 1 | qwen3moe.attention.layer_norm_rms_epsilon | 1e-06 | +| 23 | UINT32 | 1 | qwen3moe.expert_used_count | 8 | +| 24 | UINT32 | 1 | qwen3moe.attention.key_length | 128 | +| 25 | UINT32 | 1 | qwen3moe.attention.value_length | 128 | +| 26 | UINT32 | 1 | qwen3moe.expert_count | 128 | +| 27 | UINT32 | 1 | qwen3moe.expert_feed_forward_length | 768 | +| 28 | STRING | 1 | tokenizer.ggml.model | `gpt2` | +| 29 | STRING | 1 | tokenizer.ggml.pre | `qwen2` | +| 30 | [STRING] | 151936 | tokenizer.ggml.tokens | [ `!`, `"`, `#`, `$`, `%`, ... ] | +| 31 | [INT32] | 151936 | tokenizer.ggml.token_type | [ 1, 1, 1, 1, 1, 1, 1, ... ] | +| 32 | [STRING] | 151387 | tokenizer.ggml.merges | [ `Ġ Ġ`, `ĠĠ ĠĠ`, `i n`, `Ġ t`, `ĠĠĠĠ ĠĠĠĠ`, ... ] | +| 33 | UINT32 | 1 | tokenizer.ggml.eos_token_id | 151645 | +| 34 | UINT32 | 1 | tokenizer.ggml.padding_token_id | 151643 | +| 35 | UINT32 | 1 | tokenizer.ggml.bos_token_id | 151643 | +| 36 | BOOL | 1 | tokenizer.ggml.add_bos_token | False | +| 37 | STRING | 1 | tokenizer.chat_template | `{%- if tools %}{{- '<|im_`...`{%- endif %}{%- endif %}` | +| 38 | UINT32 | 1 | general.quantization_version | 2 | +| 39 | UINT32 | 1 | general.file_type | 27 | +| 40 | BOOL | 1 | general.pruned | True | +| 41 | UINT32 | 1 | qwen3moe.block_count | 46 | +| 42 | STRING | 1 | quantize.imatrix.file | `./imatrix/imatrix-Qwen3-30B-A3B-medium.dat` | +| 43 | STRING | 1 | quantize.imatrix.dataset | `../../datasets/imatrix/combined_all_medium.txt` | +| 44 | INT32 | 1 | quantize.imatrix.entries_count | 385 | +| 45 | INT32 | 1 | quantize.imatrix.chunks_count | 6946 | + +## Tensors Overview ~29B Elements + +Total number of elements in all tensors: 29285881344 Elements + +- [Qwen3-30B-A3B-IQ3\_M.gguf - GGUF Internal File Dump](#qwen3-30b-a3b-iq3_mgguf---gguf-internal-file-dump) + - [Key Value Metadata Store](#key-value-metadata-store) + - [Tensors Overview ~29B Elements](#tensors-overview-29b-elements) + - [Tensor Data Offset](#tensor-data-offset) + - [Base Tensor Group : ~622M Elements](#base-tensor-group--622m-elements) + - [Block 0 Tensor Group : ~623M Elements](#block-0-tensor-group--623m-elements) + - [Block 1 Tensor Group : ~623M Elements](#block-1-tensor-group--623m-elements) + - [Block 2 Tensor Group : ~623M Elements](#block-2-tensor-group--623m-elements) + - [Block 3 Tensor Group : ~623M Elements](#block-3-tensor-group--623m-elements) + - [Block 4 Tensor Group : ~623M Elements](#block-4-tensor-group--623m-elements) + - [Block 5 Tensor Group : ~623M Elements](#block-5-tensor-group--623m-elements) + - [Block 6 Tensor Group : ~623M Elements](#block-6-tensor-group--623m-elements) + - [Block 7 Tensor Group : ~623M Elements](#block-7-tensor-group--623m-elements) + - [Block 8 Tensor Group : ~623M Elements](#block-8-tensor-group--623m-elements) + - [Block 9 Tensor Group : ~623M Elements](#block-9-tensor-group--623m-elements) + - [Block 10 Tensor Group : ~623M Elements](#block-10-tensor-group--623m-elements) + - [Block 11 Tensor Group : ~623M Elements](#block-11-tensor-group--623m-elements) + - [Block 12 Tensor Group : ~623M Elements](#block-12-tensor-group--623m-elements) + - [Block 13 Tensor Group : ~623M Elements](#block-13-tensor-group--623m-elements) + - [Block 14 Tensor Group : ~623M Elements](#block-14-tensor-group--623m-elements) + - [Block 15 Tensor Group : ~623M Elements](#block-15-tensor-group--623m-elements) + - [Block 16 Tensor Group : ~623M Elements](#block-16-tensor-group--623m-elements) + - [Block 17 Tensor Group : ~623M Elements](#block-17-tensor-group--623m-elements) + - [Block 18 Tensor Group : ~623M Elements](#block-18-tensor-group--623m-elements) + - [Block 19 Tensor Group : ~623M Elements](#block-19-tensor-group--623m-elements) + - [Block 20 Tensor Group : ~623M Elements](#block-20-tensor-group--623m-elements) + - [Block 21 Tensor Group : ~623M Elements](#block-21-tensor-group--623m-elements) + - [Block 22 Tensor Group : ~623M Elements](#block-22-tensor-group--623m-elements) + - [Block 23 Tensor Group : ~623M Elements](#block-23-tensor-group--623m-elements) + - [Block 24 Tensor Group : ~623M Elements](#block-24-tensor-group--623m-elements) + - [Block 25 Tensor Group : ~623M Elements](#block-25-tensor-group--623m-elements) + - [Block 26 Tensor Group : ~623M Elements](#block-26-tensor-group--623m-elements) + - [Block 27 Tensor Group : ~623M Elements](#block-27-tensor-group--623m-elements) + - [Block 28 Tensor Group : ~623M Elements](#block-28-tensor-group--623m-elements) + - [Block 29 Tensor Group : ~623M Elements](#block-29-tensor-group--623m-elements) + - [Block 30 Tensor Group : ~623M Elements](#block-30-tensor-group--623m-elements) + - [Block 31 Tensor Group : ~623M Elements](#block-31-tensor-group--623m-elements) + - [Block 32 Tensor Group : ~623M Elements](#block-32-tensor-group--623m-elements) + - [Block 33 Tensor Group : ~623M Elements](#block-33-tensor-group--623m-elements) + - [Block 34 Tensor Group : ~623M Elements](#block-34-tensor-group--623m-elements) + - [Block 35 Tensor Group : ~623M Elements](#block-35-tensor-group--623m-elements) + - [Block 36 Tensor Group : ~623M Elements](#block-36-tensor-group--623m-elements) + - [Block 37 Tensor Group : ~623M Elements](#block-37-tensor-group--623m-elements) + - [Block 38 Tensor Group : ~623M Elements](#block-38-tensor-group--623m-elements) + - [Block 39 Tensor Group : ~623M Elements](#block-39-tensor-group--623m-elements) + - [Block 40 Tensor Group : ~623M Elements](#block-40-tensor-group--623m-elements) + - [Block 41 Tensor Group : ~623M Elements](#block-41-tensor-group--623m-elements) + - [Block 42 Tensor Group : ~623M Elements](#block-42-tensor-group--623m-elements) + - [Block 43 Tensor Group : ~623M Elements](#block-43-tensor-group--623m-elements) + - [Block 44 Tensor Group : ~623M Elements](#block-44-tensor-group--623m-elements) + - [Block 45 Tensor Group : ~623M Elements](#block-45-tensor-group--623m-elements) + +### Tensor Data Offset + +This table contains the offset and data segment relative to start of file + +| T_ID | Tensor Layer Name | Data Offset (B) | Data Size (B) | +|-----:|:----------------------------|-----------------:|-----------------:| +| 0 | output.weight | 0x5b12e0 | 0x7f82800 | +| 1 | output_norm.weight | 0x8533ae0 | 0x2000 | +| 2 | token_embd.weight | 0x8535ae0 | 0x7f82800 | +| 3 | blk.0.attn_k.weight | 0x104b82e0 | 0x62000 | +| 4 | blk.0.attn_k_norm.weight | 0x1051a2e0 | 0x200 | +| 5 | blk.0.attn_norm.weight | 0x1051a4e0 | 0x2000 | +| 6 | blk.0.attn_output.weight | 0x1051c4e0 | 0x480000 | +| 7 | blk.0.attn_q.weight | 0x1099c4e0 | 0x310000 | +| 8 | blk.0.attn_q_norm.weight | 0x10cac4e0 | 0x200 | +| 9 | blk.0.attn_v.weight | 0x10cac6e0 | 0x6e000 | +| 10 | blk.0.ffn_down_exps.weight | 0x10d1a6e0 | 0x6c00000 | +| 11 | blk.0.ffn_gate_exps.weight | 0x1791a6e0 | 0x4980000 | +| 12 | blk.0.ffn_gate_inp.weight | 0x1c29a6e0 | 0x100000 | +| 13 | blk.0.ffn_norm.weight | 0x1c39a6e0 | 0x2000 | +| 14 | blk.0.ffn_up_exps.weight | 0x1c39c6e0 | 0x4980000 | +| 15 | blk.1.attn_k.weight | 0x20d1c6e0 | 0x62000 | +| 16 | blk.1.attn_k_norm.weight | 0x20d7e6e0 | 0x200 | +| 17 | blk.1.attn_norm.weight | 0x20d7e8e0 | 0x2000 | +| 18 | blk.1.attn_output.weight | 0x20d808e0 | 0x480000 | +| 19 | blk.1.attn_q.weight | 0x212008e0 | 0x310000 | +| 20 | blk.1.attn_q_norm.weight | 0x215108e0 | 0x200 | +| 21 | blk.1.attn_v.weight | 0x21510ae0 | 0x6e000 | +| 22 | blk.1.ffn_down_exps.weight | 0x2157eae0 | 0x6c00000 | +| 23 | blk.1.ffn_gate_exps.weight | 0x2817eae0 | 0x4980000 | +| 24 | blk.1.ffn_gate_inp.weight | 0x2cafeae0 | 0x100000 | +| 25 | blk.1.ffn_norm.weight | 0x2cbfeae0 | 0x2000 | +| 26 | blk.1.ffn_up_exps.weight | 0x2cc00ae0 | 0x4980000 | +| 27 | blk.2.attn_k.weight | 0x31580ae0 | 0x62000 | +| 28 | blk.2.attn_k_norm.weight | 0x315e2ae0 | 0x200 | +| 29 | blk.2.attn_norm.weight | 0x315e2ce0 | 0x2000 | +| 30 | blk.2.attn_output.weight | 0x315e4ce0 | 0x480000 | +| 31 | blk.2.attn_q.weight | 0x31a64ce0 | 0x310000 | +| 32 | blk.2.attn_q_norm.weight | 0x31d74ce0 | 0x200 | +| 33 | blk.2.attn_v.weight | 0x31d74ee0 | 0x6e000 | +| 34 | blk.2.ffn_down_exps.weight | 0x31de2ee0 | 0x6c00000 | +| 35 | blk.2.ffn_gate_exps.weight | 0x389e2ee0 | 0x4980000 | +| 36 | blk.2.ffn_gate_inp.weight | 0x3d362ee0 | 0x100000 | +| 37 | blk.2.ffn_norm.weight | 0x3d462ee0 | 0x2000 | +| 38 | blk.2.ffn_up_exps.weight | 0x3d464ee0 | 0x4980000 | +| 39 | blk.3.attn_k.weight | 0x41de4ee0 | 0x62000 | +| 40 | blk.3.attn_k_norm.weight | 0x41e46ee0 | 0x200 | +| 41 | blk.3.attn_norm.weight | 0x41e470e0 | 0x2000 | +| 42 | blk.3.attn_output.weight | 0x41e490e0 | 0x480000 | +| 43 | blk.3.attn_q.weight | 0x422c90e0 | 0x310000 | +| 44 | blk.3.attn_q_norm.weight | 0x425d90e0 | 0x200 | +| 45 | blk.3.attn_v.weight | 0x425d92e0 | 0x6e000 | +| 46 | blk.3.ffn_down_exps.weight | 0x426472e0 | 0x6c00000 | +| 47 | blk.3.ffn_gate_exps.weight | 0x492472e0 | 0x4980000 | +| 48 | blk.3.ffn_gate_inp.weight | 0x4dbc72e0 | 0x100000 | +| 49 | blk.3.ffn_norm.weight | 0x4dcc72e0 | 0x2000 | +| 50 | blk.3.ffn_up_exps.weight | 0x4dcc92e0 | 0x4980000 | +| 51 | blk.4.attn_k.weight | 0x526492e0 | 0x62000 | +| 52 | blk.4.attn_k_norm.weight | 0x526ab2e0 | 0x200 | +| 53 | blk.4.attn_norm.weight | 0x526ab4e0 | 0x2000 | +| 54 | blk.4.attn_output.weight | 0x526ad4e0 | 0x480000 | +| 55 | blk.4.attn_q.weight | 0x52b2d4e0 | 0x310000 | +| 56 | blk.4.attn_q_norm.weight | 0x52e3d4e0 | 0x200 | +| 57 | blk.4.attn_v.weight | 0x52e3d6e0 | 0x6e000 | +| 58 | blk.4.ffn_down_exps.weight | 0x52eab6e0 | 0x6c00000 | +| 59 | blk.4.ffn_gate_exps.weight | 0x59aab6e0 | 0x4980000 | +| 60 | blk.4.ffn_gate_inp.weight | 0x5e42b6e0 | 0x100000 | +| 61 | blk.4.ffn_norm.weight | 0x5e52b6e0 | 0x2000 | +| 62 | blk.4.ffn_up_exps.weight | 0x5e52d6e0 | 0x4980000 | +| 63 | blk.5.attn_k.weight | 0x62ead6e0 | 0x62000 | +| 64 | blk.5.attn_k_norm.weight | 0x62f0f6e0 | 0x200 | +| 65 | blk.5.attn_norm.weight | 0x62f0f8e0 | 0x2000 | +| 66 | blk.5.attn_output.weight | 0x62f118e0 | 0x480000 | +| 67 | blk.5.attn_q.weight | 0x633918e0 | 0x310000 | +| 68 | blk.5.attn_q_norm.weight | 0x636a18e0 | 0x200 | +| 69 | blk.5.attn_v.weight | 0x636a1ae0 | 0x6e000 | +| 70 | blk.5.ffn_down_exps.weight | 0x6370fae0 | 0x6c00000 | +| 71 | blk.5.ffn_gate_exps.weight | 0x6a30fae0 | 0x4980000 | +| 72 | blk.5.ffn_gate_inp.weight | 0x6ec8fae0 | 0x100000 | +| 73 | blk.5.ffn_norm.weight | 0x6ed8fae0 | 0x2000 | +| 74 | blk.5.ffn_up_exps.weight | 0x6ed91ae0 | 0x4980000 | +| 75 | blk.6.attn_k.weight | 0x73711ae0 | 0x62000 | +| 76 | blk.6.attn_k_norm.weight | 0x73773ae0 | 0x200 | +| 77 | blk.6.attn_norm.weight | 0x73773ce0 | 0x2000 | +| 78 | blk.6.attn_output.weight | 0x73775ce0 | 0x480000 | +| 79 | blk.6.attn_q.weight | 0x73bf5ce0 | 0x310000 | +| 80 | blk.6.attn_q_norm.weight | 0x73f05ce0 | 0x200 | +| 81 | blk.6.attn_v.weight | 0x73f05ee0 | 0x6e000 | +| 82 | blk.6.ffn_down_exps.weight | 0x73f73ee0 | 0x6c00000 | +| 83 | blk.6.ffn_gate_exps.weight | 0x7ab73ee0 | 0x4980000 | +| 84 | blk.6.ffn_gate_inp.weight | 0x7f4f3ee0 | 0x100000 | +| 85 | blk.6.ffn_norm.weight | 0x7f5f3ee0 | 0x2000 | +| 86 | blk.6.ffn_up_exps.weight | 0x7f5f5ee0 | 0x4980000 | +| 87 | blk.7.attn_k.weight | 0x83f75ee0 | 0x62000 | +| 88 | blk.7.attn_k_norm.weight | 0x83fd7ee0 | 0x200 | +| 89 | blk.7.attn_norm.weight | 0x83fd80e0 | 0x2000 | +| 90 | blk.7.attn_output.weight | 0x83fda0e0 | 0x480000 | +| 91 | blk.7.attn_q.weight | 0x8445a0e0 | 0x310000 | +| 92 | blk.7.attn_q_norm.weight | 0x8476a0e0 | 0x200 | +| 93 | blk.7.attn_v.weight | 0x8476a2e0 | 0x6e000 | +| 94 | blk.7.ffn_down_exps.weight | 0x847d82e0 | 0x6c00000 | +| 95 | blk.7.ffn_gate_exps.weight | 0x8b3d82e0 | 0x4980000 | +| 96 | blk.7.ffn_gate_inp.weight | 0x8fd582e0 | 0x100000 | +| 97 | blk.7.ffn_norm.weight | 0x8fe582e0 | 0x2000 | +| 98 | blk.7.ffn_up_exps.weight | 0x8fe5a2e0 | 0x4980000 | +| 99 | blk.8.attn_k.weight | 0x947da2e0 | 0x62000 | +| 100 | blk.8.attn_k_norm.weight | 0x9483c2e0 | 0x200 | +| 101 | blk.8.attn_norm.weight | 0x9483c4e0 | 0x2000 | +| 102 | blk.8.attn_output.weight | 0x9483e4e0 | 0x480000 | +| 103 | blk.8.attn_q.weight | 0x94cbe4e0 | 0x310000 | +| 104 | blk.8.attn_q_norm.weight | 0x94fce4e0 | 0x200 | +| 105 | blk.8.attn_v.weight | 0x94fce6e0 | 0x6e000 | +| 106 | blk.8.ffn_down_exps.weight | 0x9503c6e0 | 0x6c00000 | +| 107 | blk.8.ffn_gate_exps.weight | 0x9bc3c6e0 | 0x4980000 | +| 108 | blk.8.ffn_gate_inp.weight | 0xa05bc6e0 | 0x100000 | +| 109 | blk.8.ffn_norm.weight | 0xa06bc6e0 | 0x2000 | +| 110 | blk.8.ffn_up_exps.weight | 0xa06be6e0 | 0x4980000 | +| 111 | blk.9.attn_k.weight | 0xa503e6e0 | 0x62000 | +| 112 | blk.9.attn_k_norm.weight | 0xa50a06e0 | 0x200 | +| 113 | blk.9.attn_norm.weight | 0xa50a08e0 | 0x2000 | +| 114 | blk.9.attn_output.weight | 0xa50a28e0 | 0x480000 | +| 115 | blk.9.attn_q.weight | 0xa55228e0 | 0x310000 | +| 116 | blk.9.attn_q_norm.weight | 0xa58328e0 | 0x200 | +| 117 | blk.9.attn_v.weight | 0xa5832ae0 | 0x6e000 | +| 118 | blk.9.ffn_down_exps.weight | 0xa58a0ae0 | 0x6c00000 | +| 119 | blk.9.ffn_gate_exps.weight | 0xac4a0ae0 | 0x4980000 | +| 120 | blk.9.ffn_gate_inp.weight | 0xb0e20ae0 | 0x100000 | +| 121 | blk.9.ffn_norm.weight | 0xb0f20ae0 | 0x2000 | +| 122 | blk.9.ffn_up_exps.weight | 0xb0f22ae0 | 0x4980000 | +| 123 | blk.10.attn_k.weight | 0xb58a2ae0 | 0x62000 | +| 124 | blk.10.attn_k_norm.weight | 0xb5904ae0 | 0x200 | +| 125 | blk.10.attn_norm.weight | 0xb5904ce0 | 0x2000 | +| 126 | blk.10.attn_output.weight | 0xb5906ce0 | 0x480000 | +| 127 | blk.10.attn_q.weight | 0xb5d86ce0 | 0x310000 | +| 128 | blk.10.attn_q_norm.weight | 0xb6096ce0 | 0x200 | +| 129 | blk.10.attn_v.weight | 0xb6096ee0 | 0x6e000 | +| 130 | blk.10.ffn_down_exps.weight | 0xb6104ee0 | 0x6c00000 | +| 131 | blk.10.ffn_gate_exps.weight | 0xbcd04ee0 | 0x4980000 | +| 132 | blk.10.ffn_gate_inp.weight | 0xc1684ee0 | 0x100000 | +| 133 | blk.10.ffn_norm.weight | 0xc1784ee0 | 0x2000 | +| 134 | blk.10.ffn_up_exps.weight | 0xc1786ee0 | 0x4980000 | +| 135 | blk.11.attn_k.weight | 0xc6106ee0 | 0x62000 | +| 136 | blk.11.attn_k_norm.weight | 0xc6168ee0 | 0x200 | +| 137 | blk.11.attn_norm.weight | 0xc61690e0 | 0x2000 | +| 138 | blk.11.attn_output.weight | 0xc616b0e0 | 0x480000 | +| 139 | blk.11.attn_q.weight | 0xc65eb0e0 | 0x310000 | +| 140 | blk.11.attn_q_norm.weight | 0xc68fb0e0 | 0x200 | +| 141 | blk.11.attn_v.weight | 0xc68fb2e0 | 0x6e000 | +| 142 | blk.11.ffn_down_exps.weight | 0xc69692e0 | 0x6c00000 | +| 143 | blk.11.ffn_gate_exps.weight | 0xcd5692e0 | 0x4980000 | +| 144 | blk.11.ffn_gate_inp.weight | 0xd1ee92e0 | 0x100000 | +| 145 | blk.11.ffn_norm.weight | 0xd1fe92e0 | 0x2000 | +| 146 | blk.11.ffn_up_exps.weight | 0xd1feb2e0 | 0x4980000 | +| 147 | blk.12.attn_k.weight | 0xd696b2e0 | 0x62000 | +| 148 | blk.12.attn_k_norm.weight | 0xd69cd2e0 | 0x200 | +| 149 | blk.12.attn_norm.weight | 0xd69cd4e0 | 0x2000 | +| 150 | blk.12.attn_output.weight | 0xd69cf4e0 | 0x480000 | +| 151 | blk.12.attn_q.weight | 0xd6e4f4e0 | 0x310000 | +| 152 | blk.12.attn_q_norm.weight | 0xd715f4e0 | 0x200 | +| 153 | blk.12.attn_v.weight | 0xd715f6e0 | 0x6e000 | +| 154 | blk.12.ffn_down_exps.weight | 0xd71cd6e0 | 0x6c00000 | +| 155 | blk.12.ffn_gate_exps.weight | 0xdddcd6e0 | 0x4980000 | +| 156 | blk.12.ffn_gate_inp.weight | 0xe274d6e0 | 0x100000 | +| 157 | blk.12.ffn_norm.weight | 0xe284d6e0 | 0x2000 | +| 158 | blk.12.ffn_up_exps.weight | 0xe284f6e0 | 0x4980000 | +| 159 | blk.13.attn_k.weight | 0xe71cf6e0 | 0x62000 | +| 160 | blk.13.attn_k_norm.weight | 0xe72316e0 | 0x200 | +| 161 | blk.13.attn_norm.weight | 0xe72318e0 | 0x2000 | +| 162 | blk.13.attn_output.weight | 0xe72338e0 | 0x480000 | +| 163 | blk.13.attn_q.weight | 0xe76b38e0 | 0x310000 | +| 164 | blk.13.attn_q_norm.weight | 0xe79c38e0 | 0x200 | +| 165 | blk.13.attn_v.weight | 0xe79c3ae0 | 0x6e000 | +| 166 | blk.13.ffn_down_exps.weight | 0xe7a31ae0 | 0x6c00000 | +| 167 | blk.13.ffn_gate_exps.weight | 0xee631ae0 | 0x4980000 | +| 168 | blk.13.ffn_gate_inp.weight | 0xf2fb1ae0 | 0x100000 | +| 169 | blk.13.ffn_norm.weight | 0xf30b1ae0 | 0x2000 | +| 170 | blk.13.ffn_up_exps.weight | 0xf30b3ae0 | 0x4980000 | +| 171 | blk.14.attn_k.weight | 0xf7a33ae0 | 0x62000 | +| 172 | blk.14.attn_k_norm.weight | 0xf7a95ae0 | 0x200 | +| 173 | blk.14.attn_norm.weight | 0xf7a95ce0 | 0x2000 | +| 174 | blk.14.attn_output.weight | 0xf7a97ce0 | 0x480000 | +| 175 | blk.14.attn_q.weight | 0xf7f17ce0 | 0x310000 | +| 176 | blk.14.attn_q_norm.weight | 0xf8227ce0 | 0x200 | +| 177 | blk.14.attn_v.weight | 0xf8227ee0 | 0x6e000 | +| 178 | blk.14.ffn_down_exps.weight | 0xf8295ee0 | 0x6c00000 | +| 179 | blk.14.ffn_gate_exps.weight | 0xfee95ee0 | 0x4980000 | +| 180 | blk.14.ffn_gate_inp.weight | 0x103815ee0 | 0x100000 | +| 181 | blk.14.ffn_norm.weight | 0x103915ee0 | 0x2000 | +| 182 | blk.14.ffn_up_exps.weight | 0x103917ee0 | 0x4980000 | +| 183 | blk.15.attn_k.weight | 0x108297ee0 | 0x62000 | +| 184 | blk.15.attn_k_norm.weight | 0x1082f9ee0 | 0x200 | +| 185 | blk.15.attn_norm.weight | 0x1082fa0e0 | 0x2000 | +| 186 | blk.15.attn_output.weight | 0x1082fc0e0 | 0x480000 | +| 187 | blk.15.attn_q.weight | 0x10877c0e0 | 0x310000 | +| 188 | blk.15.attn_q_norm.weight | 0x108a8c0e0 | 0x200 | +| 189 | blk.15.attn_v.weight | 0x108a8c2e0 | 0x6e000 | +| 190 | blk.15.ffn_down_exps.weight | 0x108afa2e0 | 0x6c00000 | +| 191 | blk.15.ffn_gate_exps.weight | 0x10f6fa2e0 | 0x4980000 | +| 192 | blk.15.ffn_gate_inp.weight | 0x11407a2e0 | 0x100000 | +| 193 | blk.15.ffn_norm.weight | 0x11417a2e0 | 0x2000 | +| 194 | blk.15.ffn_up_exps.weight | 0x11417c2e0 | 0x4980000 | +| 195 | blk.16.attn_k.weight | 0x118afc2e0 | 0x62000 | +| 196 | blk.16.attn_k_norm.weight | 0x118b5e2e0 | 0x200 | +| 197 | blk.16.attn_norm.weight | 0x118b5e4e0 | 0x2000 | +| 198 | blk.16.attn_output.weight | 0x118b604e0 | 0x480000 | +| 199 | blk.16.attn_q.weight | 0x118fe04e0 | 0x310000 | +| 200 | blk.16.attn_q_norm.weight | 0x1192f04e0 | 0x200 | +| 201 | blk.16.attn_v.weight | 0x1192f06e0 | 0x6e000 | +| 202 | blk.16.ffn_down_exps.weight | 0x11935e6e0 | 0x6c00000 | +| 203 | blk.16.ffn_gate_exps.weight | 0x11ff5e6e0 | 0x4980000 | +| 204 | blk.16.ffn_gate_inp.weight | 0x1248de6e0 | 0x100000 | +| 205 | blk.16.ffn_norm.weight | 0x1249de6e0 | 0x2000 | +| 206 | blk.16.ffn_up_exps.weight | 0x1249e06e0 | 0x4980000 | +| 207 | blk.17.attn_k.weight | 0x1293606e0 | 0x62000 | +| 208 | blk.17.attn_k_norm.weight | 0x1293c26e0 | 0x200 | +| 209 | blk.17.attn_norm.weight | 0x1293c28e0 | 0x2000 | +| 210 | blk.17.attn_output.weight | 0x1293c48e0 | 0x480000 | +| 211 | blk.17.attn_q.weight | 0x1298448e0 | 0x310000 | +| 212 | blk.17.attn_q_norm.weight | 0x129b548e0 | 0x200 | +| 213 | blk.17.attn_v.weight | 0x129b54ae0 | 0x6e000 | +| 214 | blk.17.ffn_down_exps.weight | 0x129bc2ae0 | 0x6c00000 | +| 215 | blk.17.ffn_gate_exps.weight | 0x1307c2ae0 | 0x4980000 | +| 216 | blk.17.ffn_gate_inp.weight | 0x135142ae0 | 0x100000 | +| 217 | blk.17.ffn_norm.weight | 0x135242ae0 | 0x2000 | +| 218 | blk.17.ffn_up_exps.weight | 0x135244ae0 | 0x4980000 | +| 219 | blk.18.attn_k.weight | 0x139bc4ae0 | 0x62000 | +| 220 | blk.18.attn_k_norm.weight | 0x139c26ae0 | 0x200 | +| 221 | blk.18.attn_norm.weight | 0x139c26ce0 | 0x2000 | +| 222 | blk.18.attn_output.weight | 0x139c28ce0 | 0x480000 | +| 223 | blk.18.attn_q.weight | 0x13a0a8ce0 | 0x310000 | +| 224 | blk.18.attn_q_norm.weight | 0x13a3b8ce0 | 0x200 | +| 225 | blk.18.attn_v.weight | 0x13a3b8ee0 | 0x6e000 | +| 226 | blk.18.ffn_down_exps.weight | 0x13a426ee0 | 0x6c00000 | +| 227 | blk.18.ffn_gate_exps.weight | 0x141026ee0 | 0x5280000 | +| 228 | blk.18.ffn_gate_inp.weight | 0x1462a6ee0 | 0x100000 | +| 229 | blk.18.ffn_norm.weight | 0x1463a6ee0 | 0x2000 | +| 230 | blk.18.ffn_up_exps.weight | 0x1463a8ee0 | 0x5280000 | +| 231 | blk.19.attn_k.weight | 0x14b628ee0 | 0x62000 | +| 232 | blk.19.attn_k_norm.weight | 0x14b68aee0 | 0x200 | +| 233 | blk.19.attn_norm.weight | 0x14b68b0e0 | 0x2000 | +| 234 | blk.19.attn_output.weight | 0x14b68d0e0 | 0x480000 | +| 235 | blk.19.attn_q.weight | 0x14bb0d0e0 | 0x310000 | +| 236 | blk.19.attn_q_norm.weight | 0x14be1d0e0 | 0x200 | +| 237 | blk.19.attn_v.weight | 0x14be1d2e0 | 0x6e000 | +| 238 | blk.19.ffn_down_exps.weight | 0x14be8b2e0 | 0x6c00000 | +| 239 | blk.19.ffn_gate_exps.weight | 0x152a8b2e0 | 0x4980000 | +| 240 | blk.19.ffn_gate_inp.weight | 0x15740b2e0 | 0x100000 | +| 241 | blk.19.ffn_norm.weight | 0x15750b2e0 | 0x2000 | +| 242 | blk.19.ffn_up_exps.weight | 0x15750d2e0 | 0x4980000 | +| 243 | blk.20.attn_k.weight | 0x15be8d2e0 | 0x62000 | +| 244 | blk.20.attn_k_norm.weight | 0x15beef2e0 | 0x200 | +| 245 | blk.20.attn_norm.weight | 0x15beef4e0 | 0x2000 | +| 246 | blk.20.attn_output.weight | 0x15bef14e0 | 0x480000 | +| 247 | blk.20.attn_q.weight | 0x15c3714e0 | 0x310000 | +| 248 | blk.20.attn_q_norm.weight | 0x15c6814e0 | 0x200 | +| 249 | blk.20.attn_v.weight | 0x15c6816e0 | 0x6e000 | +| 250 | blk.20.ffn_down_exps.weight | 0x15c6ef6e0 | 0x6c00000 | +| 251 | blk.20.ffn_gate_exps.weight | 0x1632ef6e0 | 0x4980000 | +| 252 | blk.20.ffn_gate_inp.weight | 0x167c6f6e0 | 0x100000 | +| 253 | blk.20.ffn_norm.weight | 0x167d6f6e0 | 0x2000 | +| 254 | blk.20.ffn_up_exps.weight | 0x167d716e0 | 0x4980000 | +| 255 | blk.21.attn_k.weight | 0x16c6f16e0 | 0x62000 | +| 256 | blk.21.attn_k_norm.weight | 0x16c7536e0 | 0x200 | +| 257 | blk.21.attn_norm.weight | 0x16c7538e0 | 0x2000 | +| 258 | blk.21.attn_output.weight | 0x16c7558e0 | 0x480000 | +| 259 | blk.21.attn_q.weight | 0x16cbd58e0 | 0x310000 | +| 260 | blk.21.attn_q_norm.weight | 0x16cee58e0 | 0x200 | +| 261 | blk.21.attn_v.weight | 0x16cee5ae0 | 0x6e000 | +| 262 | blk.21.ffn_down_exps.weight | 0x16cf53ae0 | 0x6c00000 | +| 263 | blk.21.ffn_gate_exps.weight | 0x173b53ae0 | 0x4980000 | +| 264 | blk.21.ffn_gate_inp.weight | 0x1784d3ae0 | 0x100000 | +| 265 | blk.21.ffn_norm.weight | 0x1785d3ae0 | 0x2000 | +| 266 | blk.21.ffn_up_exps.weight | 0x1785d5ae0 | 0x4980000 | +| 267 | blk.22.attn_k.weight | 0x17cf55ae0 | 0x62000 | +| 268 | blk.22.attn_k_norm.weight | 0x17cfb7ae0 | 0x200 | +| 269 | blk.22.attn_norm.weight | 0x17cfb7ce0 | 0x2000 | +| 270 | blk.22.attn_output.weight | 0x17cfb9ce0 | 0x480000 | +| 271 | blk.22.attn_q.weight | 0x17d439ce0 | 0x310000 | +| 272 | blk.22.attn_q_norm.weight | 0x17d749ce0 | 0x200 | +| 273 | blk.22.attn_v.weight | 0x17d749ee0 | 0x6e000 | +| 274 | blk.22.ffn_down_exps.weight | 0x17d7b7ee0 | 0x6c00000 | +| 275 | blk.22.ffn_gate_exps.weight | 0x1843b7ee0 | 0x4980000 | +| 276 | blk.22.ffn_gate_inp.weight | 0x188d37ee0 | 0x100000 | +| 277 | blk.22.ffn_norm.weight | 0x188e37ee0 | 0x2000 | +| 278 | blk.22.ffn_up_exps.weight | 0x188e39ee0 | 0x4980000 | +| 279 | blk.23.attn_k.weight | 0x18d7b9ee0 | 0x62000 | +| 280 | blk.23.attn_k_norm.weight | 0x18d81bee0 | 0x200 | +| 281 | blk.23.attn_norm.weight | 0x18d81c0e0 | 0x2000 | +| 282 | blk.23.attn_output.weight | 0x18d81e0e0 | 0x480000 | +| 283 | blk.23.attn_q.weight | 0x18dc9e0e0 | 0x310000 | +| 284 | blk.23.attn_q_norm.weight | 0x18dfae0e0 | 0x200 | +| 285 | blk.23.attn_v.weight | 0x18dfae2e0 | 0x6e000 | +| 286 | blk.23.ffn_down_exps.weight | 0x18e01c2e0 | 0x6c00000 | +| 287 | blk.23.ffn_gate_exps.weight | 0x194c1c2e0 | 0x4980000 | +| 288 | blk.23.ffn_gate_inp.weight | 0x19959c2e0 | 0x100000 | +| 289 | blk.23.ffn_norm.weight | 0x19969c2e0 | 0x2000 | +| 290 | blk.23.ffn_up_exps.weight | 0x19969e2e0 | 0x4980000 | +| 291 | blk.24.attn_k.weight | 0x19e01e2e0 | 0x6e000 | +| 292 | blk.24.attn_k_norm.weight | 0x19e08c2e0 | 0x200 | +| 293 | blk.24.attn_norm.weight | 0x19e08c4e0 | 0x2000 | +| 294 | blk.24.attn_output.weight | 0x19e08e4e0 | 0x480000 | +| 295 | blk.24.attn_q.weight | 0x19e50e4e0 | 0x370000 | +| 296 | blk.24.attn_q_norm.weight | 0x19e87e4e0 | 0x200 | +| 297 | blk.24.attn_v.weight | 0x19e87e6e0 | 0x90000 | +| 298 | blk.24.ffn_down_exps.weight | 0x19e90e6e0 | 0x6c00000 | +| 299 | blk.24.ffn_gate_exps.weight | 0x1a550e6e0 | 0x4980000 | +| 300 | blk.24.ffn_gate_inp.weight | 0x1a9e8e6e0 | 0x100000 | +| 301 | blk.24.ffn_norm.weight | 0x1a9f8e6e0 | 0x2000 | +| 302 | blk.24.ffn_up_exps.weight | 0x1a9f906e0 | 0x4980000 | +| 303 | blk.25.attn_k.weight | 0x1ae9106e0 | 0x6e000 | +| 304 | blk.25.attn_k_norm.weight | 0x1ae97e6e0 | 0x200 | +| 305 | blk.25.attn_norm.weight | 0x1ae97e8e0 | 0x2000 | +| 306 | blk.25.attn_output.weight | 0x1ae9808e0 | 0x480000 | +| 307 | blk.25.attn_q.weight | 0x1aee008e0 | 0x370000 | +| 308 | blk.25.attn_q_norm.weight | 0x1af1708e0 | 0x200 | +| 309 | blk.25.attn_v.weight | 0x1af170ae0 | 0x90000 | +| 310 | blk.25.ffn_down_exps.weight | 0x1af200ae0 | 0x6c00000 | +| 311 | blk.25.ffn_gate_exps.weight | 0x1b5e00ae0 | 0x5280000 | +| 312 | blk.25.ffn_gate_inp.weight | 0x1bb080ae0 | 0x100000 | +| 313 | blk.25.ffn_norm.weight | 0x1bb180ae0 | 0x2000 | +| 314 | blk.25.ffn_up_exps.weight | 0x1bb182ae0 | 0x5280000 | +| 315 | blk.26.attn_k.weight | 0x1c0402ae0 | 0x6e000 | +| 316 | blk.26.attn_k_norm.weight | 0x1c0470ae0 | 0x200 | +| 317 | blk.26.attn_norm.weight | 0x1c0470ce0 | 0x2000 | +| 318 | blk.26.attn_output.weight | 0x1c0472ce0 | 0x480000 | +| 319 | blk.26.attn_q.weight | 0x1c08f2ce0 | 0x370000 | +| 320 | blk.26.attn_q_norm.weight | 0x1c0c62ce0 | 0x200 | +| 321 | blk.26.attn_v.weight | 0x1c0c62ee0 | 0x90000 | +| 322 | blk.26.ffn_down_exps.weight | 0x1c0cf2ee0 | 0x6c00000 | +| 323 | blk.26.ffn_gate_exps.weight | 0x1c78f2ee0 | 0x5280000 | +| 324 | blk.26.ffn_gate_inp.weight | 0x1ccb72ee0 | 0x100000 | +| 325 | blk.26.ffn_norm.weight | 0x1ccc72ee0 | 0x2000 | +| 326 | blk.26.ffn_up_exps.weight | 0x1ccc74ee0 | 0x5280000 | +| 327 | blk.27.attn_k.weight | 0x1d1ef4ee0 | 0x6e000 | +| 328 | blk.27.attn_k_norm.weight | 0x1d1f62ee0 | 0x200 | +| 329 | blk.27.attn_norm.weight | 0x1d1f630e0 | 0x2000 | +| 330 | blk.27.attn_output.weight | 0x1d1f650e0 | 0x480000 | +| 331 | blk.27.attn_q.weight | 0x1d23e50e0 | 0x370000 | +| 332 | blk.27.attn_q_norm.weight | 0x1d27550e0 | 0x200 | +| 333 | blk.27.attn_v.weight | 0x1d27552e0 | 0x90000 | +| 334 | blk.27.ffn_down_exps.weight | 0x1d27e52e0 | 0x6c00000 | +| 335 | blk.27.ffn_gate_exps.weight | 0x1d93e52e0 | 0x5280000 | +| 336 | blk.27.ffn_gate_inp.weight | 0x1de6652e0 | 0x100000 | +| 337 | blk.27.ffn_norm.weight | 0x1de7652e0 | 0x2000 | +| 338 | blk.27.ffn_up_exps.weight | 0x1de7672e0 | 0x5280000 | +| 339 | blk.28.attn_k.weight | 0x1e39e72e0 | 0x6e000 | +| 340 | blk.28.attn_k_norm.weight | 0x1e3a552e0 | 0x200 | +| 341 | blk.28.attn_norm.weight | 0x1e3a554e0 | 0x2000 | +| 342 | blk.28.attn_output.weight | 0x1e3a574e0 | 0x480000 | +| 343 | blk.28.attn_q.weight | 0x1e3ed74e0 | 0x370000 | +| 344 | blk.28.attn_q_norm.weight | 0x1e42474e0 | 0x200 | +| 345 | blk.28.attn_v.weight | 0x1e42476e0 | 0x90000 | +| 346 | blk.28.ffn_down_exps.weight | 0x1e42d76e0 | 0x6c00000 | +| 347 | blk.28.ffn_gate_exps.weight | 0x1eaed76e0 | 0x5280000 | +| 348 | blk.28.ffn_gate_inp.weight | 0x1f01576e0 | 0x100000 | +| 349 | blk.28.ffn_norm.weight | 0x1f02576e0 | 0x2000 | +| 350 | blk.28.ffn_up_exps.weight | 0x1f02596e0 | 0x5280000 | +| 351 | blk.29.attn_k.weight | 0x1f54d96e0 | 0x6e000 | +| 352 | blk.29.attn_k_norm.weight | 0x1f55476e0 | 0x200 | +| 353 | blk.29.attn_norm.weight | 0x1f55478e0 | 0x2000 | +| 354 | blk.29.attn_output.weight | 0x1f55498e0 | 0x480000 | +| 355 | blk.29.attn_q.weight | 0x1f59c98e0 | 0x370000 | +| 356 | blk.29.attn_q_norm.weight | 0x1f5d398e0 | 0x200 | +| 357 | blk.29.attn_v.weight | 0x1f5d39ae0 | 0x90000 | +| 358 | blk.29.ffn_down_exps.weight | 0x1f5dc9ae0 | 0x6c00000 | +| 359 | blk.29.ffn_gate_exps.weight | 0x1fc9c9ae0 | 0x5280000 | +| 360 | blk.29.ffn_gate_inp.weight | 0x201c49ae0 | 0x100000 | +| 361 | blk.29.ffn_norm.weight | 0x201d49ae0 | 0x2000 | +| 362 | blk.29.ffn_up_exps.weight | 0x201d4bae0 | 0x5280000 | +| 363 | blk.30.attn_k.weight | 0x206fcbae0 | 0x6e000 | +| 364 | blk.30.attn_k_norm.weight | 0x207039ae0 | 0x200 | +| 365 | blk.30.attn_norm.weight | 0x207039ce0 | 0x2000 | +| 366 | blk.30.attn_output.weight | 0x20703bce0 | 0x480000 | +| 367 | blk.30.attn_q.weight | 0x2074bbce0 | 0x370000 | +| 368 | blk.30.attn_q_norm.weight | 0x20782bce0 | 0x200 | +| 369 | blk.30.attn_v.weight | 0x20782bee0 | 0x90000 | +| 370 | blk.30.ffn_down_exps.weight | 0x2078bbee0 | 0x6c00000 | +| 371 | blk.30.ffn_gate_exps.weight | 0x20e4bbee0 | 0x5280000 | +| 372 | blk.30.ffn_gate_inp.weight | 0x21373bee0 | 0x100000 | +| 373 | blk.30.ffn_norm.weight | 0x21383bee0 | 0x2000 | +| 374 | blk.30.ffn_up_exps.weight | 0x21383dee0 | 0x5280000 | +| 375 | blk.31.attn_k.weight | 0x218abdee0 | 0x6e000 | +| 376 | blk.31.attn_k_norm.weight | 0x218b2bee0 | 0x200 | +| 377 | blk.31.attn_norm.weight | 0x218b2c0e0 | 0x2000 | +| 378 | blk.31.attn_output.weight | 0x218b2e0e0 | 0x480000 | +| 379 | blk.31.attn_q.weight | 0x218fae0e0 | 0x370000 | +| 380 | blk.31.attn_q_norm.weight | 0x21931e0e0 | 0x200 | +| 381 | blk.31.attn_v.weight | 0x21931e2e0 | 0x90000 | +| 382 | blk.31.ffn_down_exps.weight | 0x2193ae2e0 | 0x6c00000 | +| 383 | blk.31.ffn_gate_exps.weight | 0x21ffae2e0 | 0x5280000 | +| 384 | blk.31.ffn_gate_inp.weight | 0x22522e2e0 | 0x100000 | +| 385 | blk.31.ffn_norm.weight | 0x22532e2e0 | 0x2000 | +| 386 | blk.31.ffn_up_exps.weight | 0x2253302e0 | 0x5280000 | +| 387 | blk.32.attn_k.weight | 0x22a5b02e0 | 0x6e000 | +| 388 | blk.32.attn_k_norm.weight | 0x22a61e2e0 | 0x200 | +| 389 | blk.32.attn_norm.weight | 0x22a61e4e0 | 0x2000 | +| 390 | blk.32.attn_output.weight | 0x22a6204e0 | 0x480000 | +| 391 | blk.32.attn_q.weight | 0x22aaa04e0 | 0x370000 | +| 392 | blk.32.attn_q_norm.weight | 0x22ae104e0 | 0x200 | +| 393 | blk.32.attn_v.weight | 0x22ae106e0 | 0x90000 | +| 394 | blk.32.ffn_down_exps.weight | 0x22aea06e0 | 0x6c00000 | +| 395 | blk.32.ffn_gate_exps.weight | 0x231aa06e0 | 0x5280000 | +| 396 | blk.32.ffn_gate_inp.weight | 0x236d206e0 | 0x100000 | +| 397 | blk.32.ffn_norm.weight | 0x236e206e0 | 0x2000 | +| 398 | blk.32.ffn_up_exps.weight | 0x236e226e0 | 0x5280000 | +| 399 | blk.33.attn_k.weight | 0x23c0a26e0 | 0x6e000 | +| 400 | blk.33.attn_k_norm.weight | 0x23c1106e0 | 0x200 | +| 401 | blk.33.attn_norm.weight | 0x23c1108e0 | 0x2000 | +| 402 | blk.33.attn_output.weight | 0x23c1128e0 | 0x480000 | +| 403 | blk.33.attn_q.weight | 0x23c5928e0 | 0x370000 | +| 404 | blk.33.attn_q_norm.weight | 0x23c9028e0 | 0x200 | +| 405 | blk.33.attn_v.weight | 0x23c902ae0 | 0x90000 | +| 406 | blk.33.ffn_down_exps.weight | 0x23c992ae0 | 0x6c00000 | +| 407 | blk.33.ffn_gate_exps.weight | 0x243592ae0 | 0x5280000 | +| 408 | blk.33.ffn_gate_inp.weight | 0x248812ae0 | 0x100000 | +| 409 | blk.33.ffn_norm.weight | 0x248912ae0 | 0x2000 | +| 410 | blk.33.ffn_up_exps.weight | 0x248914ae0 | 0x5280000 | +| 411 | blk.34.attn_k.weight | 0x24db94ae0 | 0x6e000 | +| 412 | blk.34.attn_k_norm.weight | 0x24dc02ae0 | 0x200 | +| 413 | blk.34.attn_norm.weight | 0x24dc02ce0 | 0x2000 | +| 414 | blk.34.attn_output.weight | 0x24dc04ce0 | 0x480000 | +| 415 | blk.34.attn_q.weight | 0x24e084ce0 | 0x370000 | +| 416 | blk.34.attn_q_norm.weight | 0x24e3f4ce0 | 0x200 | +| 417 | blk.34.attn_v.weight | 0x24e3f4ee0 | 0x90000 | +| 418 | blk.34.ffn_down_exps.weight | 0x24e484ee0 | 0x6c00000 | +| 419 | blk.34.ffn_gate_exps.weight | 0x255084ee0 | 0x5280000 | +| 420 | blk.34.ffn_gate_inp.weight | 0x25a304ee0 | 0x100000 | +| 421 | blk.34.ffn_norm.weight | 0x25a404ee0 | 0x2000 | +| 422 | blk.34.ffn_up_exps.weight | 0x25a406ee0 | 0x5280000 | +| 423 | blk.35.attn_k.weight | 0x25f686ee0 | 0x6e000 | +| 424 | blk.35.attn_k_norm.weight | 0x25f6f4ee0 | 0x200 | +| 425 | blk.35.attn_norm.weight | 0x25f6f50e0 | 0x2000 | +| 426 | blk.35.attn_output.weight | 0x25f6f70e0 | 0x480000 | +| 427 | blk.35.attn_q.weight | 0x25fb770e0 | 0x370000 | +| 428 | blk.35.attn_q_norm.weight | 0x25fee70e0 | 0x200 | +| 429 | blk.35.attn_v.weight | 0x25fee72e0 | 0x90000 | +| 430 | blk.35.ffn_down_exps.weight | 0x25ff772e0 | 0x6c00000 | +| 431 | blk.35.ffn_gate_exps.weight | 0x266b772e0 | 0x5280000 | +| 432 | blk.35.ffn_gate_inp.weight | 0x26bdf72e0 | 0x100000 | +| 433 | blk.35.ffn_norm.weight | 0x26bef72e0 | 0x2000 | +| 434 | blk.35.ffn_up_exps.weight | 0x26bef92e0 | 0x5280000 | +| 435 | blk.36.attn_k.weight | 0x2711792e0 | 0x6e000 | +| 436 | blk.36.attn_k_norm.weight | 0x2711e72e0 | 0x200 | +| 437 | blk.36.attn_norm.weight | 0x2711e74e0 | 0x2000 | +| 438 | blk.36.attn_output.weight | 0x2711e94e0 | 0x480000 | +| 439 | blk.36.attn_q.weight | 0x2716694e0 | 0x370000 | +| 440 | blk.36.attn_q_norm.weight | 0x2719d94e0 | 0x200 | +| 441 | blk.36.attn_v.weight | 0x2719d96e0 | 0x90000 | +| 442 | blk.36.ffn_down_exps.weight | 0x271a696e0 | 0x6c00000 | +| 443 | blk.36.ffn_gate_exps.weight | 0x2786696e0 | 0x5280000 | +| 444 | blk.36.ffn_gate_inp.weight | 0x27d8e96e0 | 0x100000 | +| 445 | blk.36.ffn_norm.weight | 0x27d9e96e0 | 0x2000 | +| 446 | blk.36.ffn_up_exps.weight | 0x27d9eb6e0 | 0x5280000 | +| 447 | blk.37.attn_k.weight | 0x282c6b6e0 | 0x6e000 | +| 448 | blk.37.attn_k_norm.weight | 0x282cd96e0 | 0x200 | +| 449 | blk.37.attn_norm.weight | 0x282cd98e0 | 0x2000 | +| 450 | blk.37.attn_output.weight | 0x282cdb8e0 | 0x480000 | +| 451 | blk.37.attn_q.weight | 0x28315b8e0 | 0x370000 | +| 452 | blk.37.attn_q_norm.weight | 0x2834cb8e0 | 0x200 | +| 453 | blk.37.attn_v.weight | 0x2834cbae0 | 0x90000 | +| 454 | blk.37.ffn_down_exps.weight | 0x28355bae0 | 0x6c00000 | +| 455 | blk.37.ffn_gate_exps.weight | 0x28a15bae0 | 0x5280000 | +| 456 | blk.37.ffn_gate_inp.weight | 0x28f3dbae0 | 0x100000 | +| 457 | blk.37.ffn_norm.weight | 0x28f4dbae0 | 0x2000 | +| 458 | blk.37.ffn_up_exps.weight | 0x28f4ddae0 | 0x5280000 | +| 459 | blk.38.attn_k.weight | 0x29475dae0 | 0x6e000 | +| 460 | blk.38.attn_k_norm.weight | 0x2947cbae0 | 0x200 | +| 461 | blk.38.attn_norm.weight | 0x2947cbce0 | 0x2000 | +| 462 | blk.38.attn_output.weight | 0x2947cdce0 | 0x480000 | +| 463 | blk.38.attn_q.weight | 0x294c4dce0 | 0x370000 | +| 464 | blk.38.attn_q_norm.weight | 0x294fbdce0 | 0x200 | +| 465 | blk.38.attn_v.weight | 0x294fbdee0 | 0x90000 | +| 466 | blk.38.ffn_down_exps.weight | 0x29504dee0 | 0x6c00000 | +| 467 | blk.38.ffn_gate_exps.weight | 0x29bc4dee0 | 0x5280000 | +| 468 | blk.38.ffn_gate_inp.weight | 0x2a0ecdee0 | 0x100000 | +| 469 | blk.38.ffn_norm.weight | 0x2a0fcdee0 | 0x2000 | +| 470 | blk.38.ffn_up_exps.weight | 0x2a0fcfee0 | 0x5280000 | +| 471 | blk.39.attn_k.weight | 0x2a624fee0 | 0x6e000 | +| 472 | blk.39.attn_k_norm.weight | 0x2a62bdee0 | 0x200 | +| 473 | blk.39.attn_norm.weight | 0x2a62be0e0 | 0x2000 | +| 474 | blk.39.attn_output.weight | 0x2a62c00e0 | 0x480000 | +| 475 | blk.39.attn_q.weight | 0x2a67400e0 | 0x370000 | +| 476 | blk.39.attn_q_norm.weight | 0x2a6ab00e0 | 0x200 | +| 477 | blk.39.attn_v.weight | 0x2a6ab02e0 | 0x90000 | +| 478 | blk.39.ffn_down_exps.weight | 0x2a6b402e0 | 0x6c00000 | +| 479 | blk.39.ffn_gate_exps.weight | 0x2ad7402e0 | 0x5280000 | +| 480 | blk.39.ffn_gate_inp.weight | 0x2b29c02e0 | 0x100000 | +| 481 | blk.39.ffn_norm.weight | 0x2b2ac02e0 | 0x2000 | +| 482 | blk.39.ffn_up_exps.weight | 0x2b2ac22e0 | 0x5280000 | +| 483 | blk.40.attn_k.weight | 0x2b7d422e0 | 0x6e000 | +| 484 | blk.40.attn_k_norm.weight | 0x2b7db02e0 | 0x200 | +| 485 | blk.40.attn_norm.weight | 0x2b7db04e0 | 0x2000 | +| 486 | blk.40.attn_output.weight | 0x2b7db24e0 | 0x480000 | +| 487 | blk.40.attn_q.weight | 0x2b82324e0 | 0x370000 | +| 488 | blk.40.attn_q_norm.weight | 0x2b85a24e0 | 0x200 | +| 489 | blk.40.attn_v.weight | 0x2b85a26e0 | 0x90000 | +| 490 | blk.40.ffn_down_exps.weight | 0x2b86326e0 | 0x6c00000 | +| 491 | blk.40.ffn_gate_exps.weight | 0x2bf2326e0 | 0x5280000 | +| 492 | blk.40.ffn_gate_inp.weight | 0x2c44b26e0 | 0x100000 | +| 493 | blk.40.ffn_norm.weight | 0x2c45b26e0 | 0x2000 | +| 494 | blk.40.ffn_up_exps.weight | 0x2c45b46e0 | 0x5280000 | +| 495 | blk.41.attn_k.weight | 0x2c98346e0 | 0x6e000 | +| 496 | blk.41.attn_k_norm.weight | 0x2c98a26e0 | 0x200 | +| 497 | blk.41.attn_norm.weight | 0x2c98a28e0 | 0x2000 | +| 498 | blk.41.attn_output.weight | 0x2c98a48e0 | 0x480000 | +| 499 | blk.41.attn_q.weight | 0x2c9d248e0 | 0x370000 | +| 500 | blk.41.attn_q_norm.weight | 0x2ca0948e0 | 0x200 | +| 501 | blk.41.attn_v.weight | 0x2ca094ae0 | 0x90000 | +| 502 | blk.41.ffn_down_exps.weight | 0x2ca124ae0 | 0x6c00000 | +| 503 | blk.41.ffn_gate_exps.weight | 0x2d0d24ae0 | 0x5280000 | +| 504 | blk.41.ffn_gate_inp.weight | 0x2d5fa4ae0 | 0x100000 | +| 505 | blk.41.ffn_norm.weight | 0x2d60a4ae0 | 0x2000 | +| 506 | blk.41.ffn_up_exps.weight | 0x2d60a6ae0 | 0x5280000 | +| 507 | blk.42.attn_k.weight | 0x2db326ae0 | 0x6e000 | +| 508 | blk.42.attn_k_norm.weight | 0x2db394ae0 | 0x200 | +| 509 | blk.42.attn_norm.weight | 0x2db394ce0 | 0x2000 | +| 510 | blk.42.attn_output.weight | 0x2db396ce0 | 0x480000 | +| 511 | blk.42.attn_q.weight | 0x2db816ce0 | 0x370000 | +| 512 | blk.42.attn_q_norm.weight | 0x2dbb86ce0 | 0x200 | +| 513 | blk.42.attn_v.weight | 0x2dbb86ee0 | 0x90000 | +| 514 | blk.42.ffn_down_exps.weight | 0x2dbc16ee0 | 0x6c00000 | +| 515 | blk.42.ffn_gate_exps.weight | 0x2e2816ee0 | 0x5280000 | +| 516 | blk.42.ffn_gate_inp.weight | 0x2e7a96ee0 | 0x100000 | +| 517 | blk.42.ffn_norm.weight | 0x2e7b96ee0 | 0x2000 | +| 518 | blk.42.ffn_up_exps.weight | 0x2e7b98ee0 | 0x5280000 | +| 519 | blk.43.attn_k.weight | 0x2ece18ee0 | 0x6e000 | +| 520 | blk.43.attn_k_norm.weight | 0x2ece86ee0 | 0x200 | +| 521 | blk.43.attn_norm.weight | 0x2ece870e0 | 0x2000 | +| 522 | blk.43.attn_output.weight | 0x2ece890e0 | 0x480000 | +| 523 | blk.43.attn_q.weight | 0x2ed3090e0 | 0x370000 | +| 524 | blk.43.attn_q_norm.weight | 0x2ed6790e0 | 0x200 | +| 525 | blk.43.attn_v.weight | 0x2ed6792e0 | 0x90000 | +| 526 | blk.43.ffn_down_exps.weight | 0x2ed7092e0 | 0x6c00000 | +| 527 | blk.43.ffn_gate_exps.weight | 0x2f43092e0 | 0x5280000 | +| 528 | blk.43.ffn_gate_inp.weight | 0x2f95892e0 | 0x100000 | +| 529 | blk.43.ffn_norm.weight | 0x2f96892e0 | 0x2000 | +| 530 | blk.43.ffn_up_exps.weight | 0x2f968b2e0 | 0x5280000 | +| 531 | blk.44.attn_k.weight | 0x2fe90b2e0 | 0x6e000 | +| 532 | blk.44.attn_k_norm.weight | 0x2fe9792e0 | 0x200 | +| 533 | blk.44.attn_norm.weight | 0x2fe9794e0 | 0x2000 | +| 534 | blk.44.attn_output.weight | 0x2fe97b4e0 | 0x480000 | +| 535 | blk.44.attn_q.weight | 0x2fedfb4e0 | 0x370000 | +| 536 | blk.44.attn_q_norm.weight | 0x2ff16b4e0 | 0x200 | +| 537 | blk.44.attn_v.weight | 0x2ff16b6e0 | 0x90000 | +| 538 | blk.44.ffn_down_exps.weight | 0x2ff1fb6e0 | 0x6c00000 | +| 539 | blk.44.ffn_gate_exps.weight | 0x305dfb6e0 | 0x5280000 | +| 540 | blk.44.ffn_gate_inp.weight | 0x30b07b6e0 | 0x100000 | +| 541 | blk.44.ffn_norm.weight | 0x30b17b6e0 | 0x2000 | +| 542 | blk.44.ffn_up_exps.weight | 0x30b17d6e0 | 0x5280000 | +| 543 | blk.45.attn_k.weight | 0x3103fd6e0 | 0x6e000 | +| 544 | blk.45.attn_k_norm.weight | 0x31046b6e0 | 0x200 | +| 545 | blk.45.attn_norm.weight | 0x31046b8e0 | 0x2000 | +| 546 | blk.45.attn_output.weight | 0x31046d8e0 | 0x480000 | +| 547 | blk.45.attn_q.weight | 0x3108ed8e0 | 0x370000 | +| 548 | blk.45.attn_q_norm.weight | 0x310c5d8e0 | 0x200 | +| 549 | blk.45.attn_v.weight | 0x310c5dae0 | 0x90000 | +| 550 | blk.45.ffn_down_exps.weight | 0x310cedae0 | 0x6c00000 | +| 551 | blk.45.ffn_gate_exps.weight | 0x3178edae0 | 0x5280000 | +| 552 | blk.45.ffn_gate_inp.weight | 0x31cb6dae0 | 0x100000 | +| 553 | blk.45.ffn_norm.weight | 0x31cc6dae0 | 0x2000 | +| 554 | blk.45.ffn_up_exps.weight | 0x31cc6fae0 | 0x5280000 | + +### Base Tensor Group : ~622M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:-------------------|:---------------------------------|:------------------|:----------------------|:------| +| 0 | output.weight | Output (W) | (~311M) 311164928 | 2048 x 151936 x 1 x 1 | IQ3_S | +| 1 | output_norm.weight | Output Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 2 | token_embd.weight | Token Embedding (W) | (~311M) 311164928 | 2048 x 151936 x 1 x 1 | IQ3_S | + +- Total elements in base: (~622M) 622331904 +- Percentage of total elements: 2.13% + + +### Block 0 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:---------------------------|:------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 3 | blk.0.attn_k.weight | Block 0 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 4 | blk.0.attn_k_norm.weight | Block 0 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 5 | blk.0.attn_norm.weight | Block 0 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 6 | blk.0.attn_output.weight | Block 0 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 7 | blk.0.attn_q.weight | Block 0 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 8 | blk.0.attn_q_norm.weight | Block 0 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 9 | blk.0.attn_v.weight | Block 0 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 10 | blk.0.ffn_down_exps.weight | Block 0 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 11 | blk.0.ffn_gate_exps.weight | Block 0 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 12 | blk.0.ffn_gate_inp.weight | Block 0 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 13 | blk.0.ffn_norm.weight | Block 0 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 14 | blk.0.ffn_up_exps.weight | Block 0 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.0: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 1 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:---------------------------|:------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 15 | blk.1.attn_k.weight | Block 1 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 16 | blk.1.attn_k_norm.weight | Block 1 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 17 | blk.1.attn_norm.weight | Block 1 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 18 | blk.1.attn_output.weight | Block 1 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 19 | blk.1.attn_q.weight | Block 1 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 20 | blk.1.attn_q_norm.weight | Block 1 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 21 | blk.1.attn_v.weight | Block 1 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 22 | blk.1.ffn_down_exps.weight | Block 1 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 23 | blk.1.ffn_gate_exps.weight | Block 1 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 24 | blk.1.ffn_gate_inp.weight | Block 1 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 25 | blk.1.ffn_norm.weight | Block 1 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 26 | blk.1.ffn_up_exps.weight | Block 1 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.1: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 2 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:---------------------------|:------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 27 | blk.2.attn_k.weight | Block 2 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 28 | blk.2.attn_k_norm.weight | Block 2 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 29 | blk.2.attn_norm.weight | Block 2 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 30 | blk.2.attn_output.weight | Block 2 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 31 | blk.2.attn_q.weight | Block 2 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 32 | blk.2.attn_q_norm.weight | Block 2 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 33 | blk.2.attn_v.weight | Block 2 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 34 | blk.2.ffn_down_exps.weight | Block 2 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 35 | blk.2.ffn_gate_exps.weight | Block 2 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 36 | blk.2.ffn_gate_inp.weight | Block 2 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 37 | blk.2.ffn_norm.weight | Block 2 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 38 | blk.2.ffn_up_exps.weight | Block 2 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.2: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 3 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:---------------------------|:------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 39 | blk.3.attn_k.weight | Block 3 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 40 | blk.3.attn_k_norm.weight | Block 3 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 41 | blk.3.attn_norm.weight | Block 3 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 42 | blk.3.attn_output.weight | Block 3 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 43 | blk.3.attn_q.weight | Block 3 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 44 | blk.3.attn_q_norm.weight | Block 3 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 45 | blk.3.attn_v.weight | Block 3 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 46 | blk.3.ffn_down_exps.weight | Block 3 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 47 | blk.3.ffn_gate_exps.weight | Block 3 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 48 | blk.3.ffn_gate_inp.weight | Block 3 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 49 | blk.3.ffn_norm.weight | Block 3 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 50 | blk.3.ffn_up_exps.weight | Block 3 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.3: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 4 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:---------------------------|:------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 51 | blk.4.attn_k.weight | Block 4 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 52 | blk.4.attn_k_norm.weight | Block 4 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 53 | blk.4.attn_norm.weight | Block 4 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 54 | blk.4.attn_output.weight | Block 4 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 55 | blk.4.attn_q.weight | Block 4 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 56 | blk.4.attn_q_norm.weight | Block 4 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 57 | blk.4.attn_v.weight | Block 4 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 58 | blk.4.ffn_down_exps.weight | Block 4 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 59 | blk.4.ffn_gate_exps.weight | Block 4 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 60 | blk.4.ffn_gate_inp.weight | Block 4 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 61 | blk.4.ffn_norm.weight | Block 4 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 62 | blk.4.ffn_up_exps.weight | Block 4 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.4: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 5 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:---------------------------|:------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 63 | blk.5.attn_k.weight | Block 5 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 64 | blk.5.attn_k_norm.weight | Block 5 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 65 | blk.5.attn_norm.weight | Block 5 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 66 | blk.5.attn_output.weight | Block 5 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 67 | blk.5.attn_q.weight | Block 5 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 68 | blk.5.attn_q_norm.weight | Block 5 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 69 | blk.5.attn_v.weight | Block 5 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 70 | blk.5.ffn_down_exps.weight | Block 5 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 71 | blk.5.ffn_gate_exps.weight | Block 5 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 72 | blk.5.ffn_gate_inp.weight | Block 5 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 73 | blk.5.ffn_norm.weight | Block 5 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 74 | blk.5.ffn_up_exps.weight | Block 5 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.5: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 6 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:---------------------------|:------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 75 | blk.6.attn_k.weight | Block 6 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 76 | blk.6.attn_k_norm.weight | Block 6 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 77 | blk.6.attn_norm.weight | Block 6 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 78 | blk.6.attn_output.weight | Block 6 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 79 | blk.6.attn_q.weight | Block 6 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 80 | blk.6.attn_q_norm.weight | Block 6 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 81 | blk.6.attn_v.weight | Block 6 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 82 | blk.6.ffn_down_exps.weight | Block 6 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 83 | blk.6.ffn_gate_exps.weight | Block 6 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 84 | blk.6.ffn_gate_inp.weight | Block 6 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 85 | blk.6.ffn_norm.weight | Block 6 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 86 | blk.6.ffn_up_exps.weight | Block 6 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.6: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 7 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:---------------------------|:------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 87 | blk.7.attn_k.weight | Block 7 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 88 | blk.7.attn_k_norm.weight | Block 7 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 89 | blk.7.attn_norm.weight | Block 7 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 90 | blk.7.attn_output.weight | Block 7 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 91 | blk.7.attn_q.weight | Block 7 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 92 | blk.7.attn_q_norm.weight | Block 7 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 93 | blk.7.attn_v.weight | Block 7 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 94 | blk.7.ffn_down_exps.weight | Block 7 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 95 | blk.7.ffn_gate_exps.weight | Block 7 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 96 | blk.7.ffn_gate_inp.weight | Block 7 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 97 | blk.7.ffn_norm.weight | Block 7 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 98 | blk.7.ffn_up_exps.weight | Block 7 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.7: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 8 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:---------------------------|:------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 99 | blk.8.attn_k.weight | Block 8 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 100 | blk.8.attn_k_norm.weight | Block 8 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 101 | blk.8.attn_norm.weight | Block 8 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 102 | blk.8.attn_output.weight | Block 8 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 103 | blk.8.attn_q.weight | Block 8 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 104 | blk.8.attn_q_norm.weight | Block 8 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 105 | blk.8.attn_v.weight | Block 8 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 106 | blk.8.ffn_down_exps.weight | Block 8 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 107 | blk.8.ffn_gate_exps.weight | Block 8 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 108 | blk.8.ffn_gate_inp.weight | Block 8 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 109 | blk.8.ffn_norm.weight | Block 8 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 110 | blk.8.ffn_up_exps.weight | Block 8 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.8: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 9 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:---------------------------|:------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 111 | blk.9.attn_k.weight | Block 9 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 112 | blk.9.attn_k_norm.weight | Block 9 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 113 | blk.9.attn_norm.weight | Block 9 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 114 | blk.9.attn_output.weight | Block 9 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 115 | blk.9.attn_q.weight | Block 9 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 116 | blk.9.attn_q_norm.weight | Block 9 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 117 | blk.9.attn_v.weight | Block 9 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 118 | blk.9.ffn_down_exps.weight | Block 9 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 119 | blk.9.ffn_gate_exps.weight | Block 9 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 120 | blk.9.ffn_gate_inp.weight | Block 9 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 121 | blk.9.ffn_norm.weight | Block 9 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 122 | blk.9.ffn_up_exps.weight | Block 9 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.9: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 10 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 123 | blk.10.attn_k.weight | Block 10 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 124 | blk.10.attn_k_norm.weight | Block 10 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 125 | blk.10.attn_norm.weight | Block 10 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 126 | blk.10.attn_output.weight | Block 10 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 127 | blk.10.attn_q.weight | Block 10 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 128 | blk.10.attn_q_norm.weight | Block 10 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 129 | blk.10.attn_v.weight | Block 10 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 130 | blk.10.ffn_down_exps.weight | Block 10 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 131 | blk.10.ffn_gate_exps.weight | Block 10 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 132 | blk.10.ffn_gate_inp.weight | Block 10 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 133 | blk.10.ffn_norm.weight | Block 10 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 134 | blk.10.ffn_up_exps.weight | Block 10 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.10: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 11 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 135 | blk.11.attn_k.weight | Block 11 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 136 | blk.11.attn_k_norm.weight | Block 11 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 137 | blk.11.attn_norm.weight | Block 11 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 138 | blk.11.attn_output.weight | Block 11 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 139 | blk.11.attn_q.weight | Block 11 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 140 | blk.11.attn_q_norm.weight | Block 11 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 141 | blk.11.attn_v.weight | Block 11 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 142 | blk.11.ffn_down_exps.weight | Block 11 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 143 | blk.11.ffn_gate_exps.weight | Block 11 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 144 | blk.11.ffn_gate_inp.weight | Block 11 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 145 | blk.11.ffn_norm.weight | Block 11 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 146 | blk.11.ffn_up_exps.weight | Block 11 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.11: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 12 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 147 | blk.12.attn_k.weight | Block 12 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 148 | blk.12.attn_k_norm.weight | Block 12 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 149 | blk.12.attn_norm.weight | Block 12 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 150 | blk.12.attn_output.weight | Block 12 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 151 | blk.12.attn_q.weight | Block 12 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 152 | blk.12.attn_q_norm.weight | Block 12 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 153 | blk.12.attn_v.weight | Block 12 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 154 | blk.12.ffn_down_exps.weight | Block 12 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 155 | blk.12.ffn_gate_exps.weight | Block 12 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 156 | blk.12.ffn_gate_inp.weight | Block 12 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 157 | blk.12.ffn_norm.weight | Block 12 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 158 | blk.12.ffn_up_exps.weight | Block 12 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.12: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 13 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 159 | blk.13.attn_k.weight | Block 13 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 160 | blk.13.attn_k_norm.weight | Block 13 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 161 | blk.13.attn_norm.weight | Block 13 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 162 | blk.13.attn_output.weight | Block 13 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 163 | blk.13.attn_q.weight | Block 13 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 164 | blk.13.attn_q_norm.weight | Block 13 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 165 | blk.13.attn_v.weight | Block 13 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 166 | blk.13.ffn_down_exps.weight | Block 13 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 167 | blk.13.ffn_gate_exps.weight | Block 13 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 168 | blk.13.ffn_gate_inp.weight | Block 13 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 169 | blk.13.ffn_norm.weight | Block 13 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 170 | blk.13.ffn_up_exps.weight | Block 13 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.13: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 14 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 171 | blk.14.attn_k.weight | Block 14 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 172 | blk.14.attn_k_norm.weight | Block 14 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 173 | blk.14.attn_norm.weight | Block 14 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 174 | blk.14.attn_output.weight | Block 14 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 175 | blk.14.attn_q.weight | Block 14 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 176 | blk.14.attn_q_norm.weight | Block 14 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 177 | blk.14.attn_v.weight | Block 14 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 178 | blk.14.ffn_down_exps.weight | Block 14 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 179 | blk.14.ffn_gate_exps.weight | Block 14 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 180 | blk.14.ffn_gate_inp.weight | Block 14 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 181 | blk.14.ffn_norm.weight | Block 14 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 182 | blk.14.ffn_up_exps.weight | Block 14 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.14: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 15 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 183 | blk.15.attn_k.weight | Block 15 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 184 | blk.15.attn_k_norm.weight | Block 15 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 185 | blk.15.attn_norm.weight | Block 15 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 186 | blk.15.attn_output.weight | Block 15 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 187 | blk.15.attn_q.weight | Block 15 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 188 | blk.15.attn_q_norm.weight | Block 15 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 189 | blk.15.attn_v.weight | Block 15 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 190 | blk.15.ffn_down_exps.weight | Block 15 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 191 | blk.15.ffn_gate_exps.weight | Block 15 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 192 | blk.15.ffn_gate_inp.weight | Block 15 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 193 | blk.15.ffn_norm.weight | Block 15 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 194 | blk.15.ffn_up_exps.weight | Block 15 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.15: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 16 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 195 | blk.16.attn_k.weight | Block 16 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 196 | blk.16.attn_k_norm.weight | Block 16 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 197 | blk.16.attn_norm.weight | Block 16 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 198 | blk.16.attn_output.weight | Block 16 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 199 | blk.16.attn_q.weight | Block 16 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 200 | blk.16.attn_q_norm.weight | Block 16 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 201 | blk.16.attn_v.weight | Block 16 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 202 | blk.16.ffn_down_exps.weight | Block 16 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 203 | blk.16.ffn_gate_exps.weight | Block 16 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 204 | blk.16.ffn_gate_inp.weight | Block 16 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 205 | blk.16.ffn_norm.weight | Block 16 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 206 | blk.16.ffn_up_exps.weight | Block 16 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.16: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 17 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 207 | blk.17.attn_k.weight | Block 17 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 208 | blk.17.attn_k_norm.weight | Block 17 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 209 | blk.17.attn_norm.weight | Block 17 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 210 | blk.17.attn_output.weight | Block 17 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 211 | blk.17.attn_q.weight | Block 17 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 212 | blk.17.attn_q_norm.weight | Block 17 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 213 | blk.17.attn_v.weight | Block 17 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 214 | blk.17.ffn_down_exps.weight | Block 17 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 215 | blk.17.ffn_gate_exps.weight | Block 17 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 216 | blk.17.ffn_gate_inp.weight | Block 17 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 217 | blk.17.ffn_norm.weight | Block 17 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 218 | blk.17.ffn_up_exps.weight | Block 17 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.17: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 18 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 219 | blk.18.attn_k.weight | Block 18 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 220 | blk.18.attn_k_norm.weight | Block 18 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 221 | blk.18.attn_norm.weight | Block 18 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 222 | blk.18.attn_output.weight | Block 18 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 223 | blk.18.attn_q.weight | Block 18 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 224 | blk.18.attn_q_norm.weight | Block 18 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 225 | blk.18.attn_v.weight | Block 18 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 226 | blk.18.ffn_down_exps.weight | Block 18 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 227 | blk.18.ffn_gate_exps.weight | Block 18 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | +| 228 | blk.18.ffn_gate_inp.weight | Block 18 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 229 | blk.18.ffn_norm.weight | Block 18 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 230 | blk.18.ffn_up_exps.weight | Block 18 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | + +- Total elements in blk.18: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 19 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 231 | blk.19.attn_k.weight | Block 19 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 232 | blk.19.attn_k_norm.weight | Block 19 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 233 | blk.19.attn_norm.weight | Block 19 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 234 | blk.19.attn_output.weight | Block 19 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 235 | blk.19.attn_q.weight | Block 19 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 236 | blk.19.attn_q_norm.weight | Block 19 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 237 | blk.19.attn_v.weight | Block 19 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 238 | blk.19.ffn_down_exps.weight | Block 19 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 239 | blk.19.ffn_gate_exps.weight | Block 19 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 240 | blk.19.ffn_gate_inp.weight | Block 19 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 241 | blk.19.ffn_norm.weight | Block 19 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 242 | blk.19.ffn_up_exps.weight | Block 19 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.19: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 20 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 243 | blk.20.attn_k.weight | Block 20 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 244 | blk.20.attn_k_norm.weight | Block 20 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 245 | blk.20.attn_norm.weight | Block 20 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 246 | blk.20.attn_output.weight | Block 20 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 247 | blk.20.attn_q.weight | Block 20 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 248 | blk.20.attn_q_norm.weight | Block 20 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 249 | blk.20.attn_v.weight | Block 20 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 250 | blk.20.ffn_down_exps.weight | Block 20 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 251 | blk.20.ffn_gate_exps.weight | Block 20 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 252 | blk.20.ffn_gate_inp.weight | Block 20 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 253 | blk.20.ffn_norm.weight | Block 20 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 254 | blk.20.ffn_up_exps.weight | Block 20 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.20: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 21 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 255 | blk.21.attn_k.weight | Block 21 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 256 | blk.21.attn_k_norm.weight | Block 21 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 257 | blk.21.attn_norm.weight | Block 21 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 258 | blk.21.attn_output.weight | Block 21 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 259 | blk.21.attn_q.weight | Block 21 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 260 | blk.21.attn_q_norm.weight | Block 21 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 261 | blk.21.attn_v.weight | Block 21 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 262 | blk.21.ffn_down_exps.weight | Block 21 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 263 | blk.21.ffn_gate_exps.weight | Block 21 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 264 | blk.21.ffn_gate_inp.weight | Block 21 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 265 | blk.21.ffn_norm.weight | Block 21 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 266 | blk.21.ffn_up_exps.weight | Block 21 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.21: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 22 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 267 | blk.22.attn_k.weight | Block 22 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 268 | blk.22.attn_k_norm.weight | Block 22 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 269 | blk.22.attn_norm.weight | Block 22 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 270 | blk.22.attn_output.weight | Block 22 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 271 | blk.22.attn_q.weight | Block 22 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 272 | blk.22.attn_q_norm.weight | Block 22 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 273 | blk.22.attn_v.weight | Block 22 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 274 | blk.22.ffn_down_exps.weight | Block 22 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 275 | blk.22.ffn_gate_exps.weight | Block 22 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 276 | blk.22.ffn_gate_inp.weight | Block 22 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 277 | blk.22.ffn_norm.weight | Block 22 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 278 | blk.22.ffn_up_exps.weight | Block 22 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.22: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 23 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 279 | blk.23.attn_k.weight | Block 23 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_XXS | +| 280 | blk.23.attn_k_norm.weight | Block 23 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 281 | blk.23.attn_norm.weight | Block 23 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 282 | blk.23.attn_output.weight | Block 23 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 283 | blk.23.attn_q.weight | Block 23 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_XXS | +| 284 | blk.23.attn_q_norm.weight | Block 23 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 285 | blk.23.attn_v.weight | Block 23 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 286 | blk.23.ffn_down_exps.weight | Block 23 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 287 | blk.23.ffn_gate_exps.weight | Block 23 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 288 | blk.23.ffn_gate_inp.weight | Block 23 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 289 | blk.23.ffn_norm.weight | Block 23 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 290 | blk.23.ffn_up_exps.weight | Block 23 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.23: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 24 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:--------| +| 291 | blk.24.attn_k.weight | Block 24 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 292 | blk.24.attn_k_norm.weight | Block 24 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 293 | blk.24.attn_norm.weight | Block 24 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 294 | blk.24.attn_output.weight | Block 24 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 295 | blk.24.attn_q.weight | Block 24 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_S | +| 296 | blk.24.attn_q_norm.weight | Block 24 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 297 | blk.24.attn_v.weight | Block 24 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ4_NL | +| 298 | blk.24.ffn_down_exps.weight | Block 24 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 299 | blk.24.ffn_gate_exps.weight | Block 24 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | +| 300 | blk.24.ffn_gate_inp.weight | Block 24 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 301 | blk.24.ffn_norm.weight | Block 24 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 302 | blk.24.ffn_up_exps.weight | Block 24 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_XXS | + +- Total elements in blk.24: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 25 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:-------| +| 303 | blk.25.attn_k.weight | Block 25 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 304 | blk.25.attn_k_norm.weight | Block 25 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 305 | blk.25.attn_norm.weight | Block 25 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 306 | blk.25.attn_output.weight | Block 25 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 307 | blk.25.attn_q.weight | Block 25 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_S | +| 308 | blk.25.attn_q_norm.weight | Block 25 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 309 | blk.25.attn_v.weight | Block 25 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ4_NL | +| 310 | blk.25.ffn_down_exps.weight | Block 25 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 311 | blk.25.ffn_gate_exps.weight | Block 25 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | +| 312 | blk.25.ffn_gate_inp.weight | Block 25 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 313 | blk.25.ffn_norm.weight | Block 25 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 314 | blk.25.ffn_up_exps.weight | Block 25 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | + +- Total elements in blk.25: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 26 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:-------| +| 315 | blk.26.attn_k.weight | Block 26 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 316 | blk.26.attn_k_norm.weight | Block 26 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 317 | blk.26.attn_norm.weight | Block 26 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 318 | blk.26.attn_output.weight | Block 26 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 319 | blk.26.attn_q.weight | Block 26 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_S | +| 320 | blk.26.attn_q_norm.weight | Block 26 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 321 | blk.26.attn_v.weight | Block 26 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ4_NL | +| 322 | blk.26.ffn_down_exps.weight | Block 26 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 323 | blk.26.ffn_gate_exps.weight | Block 26 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | +| 324 | blk.26.ffn_gate_inp.weight | Block 26 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 325 | blk.26.ffn_norm.weight | Block 26 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 326 | blk.26.ffn_up_exps.weight | Block 26 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | + +- Total elements in blk.26: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 27 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:-------| +| 327 | blk.27.attn_k.weight | Block 27 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 328 | blk.27.attn_k_norm.weight | Block 27 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 329 | blk.27.attn_norm.weight | Block 27 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 330 | blk.27.attn_output.weight | Block 27 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 331 | blk.27.attn_q.weight | Block 27 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_S | +| 332 | blk.27.attn_q_norm.weight | Block 27 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 333 | blk.27.attn_v.weight | Block 27 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ4_NL | +| 334 | blk.27.ffn_down_exps.weight | Block 27 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 335 | blk.27.ffn_gate_exps.weight | Block 27 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | +| 336 | blk.27.ffn_gate_inp.weight | Block 27 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 337 | blk.27.ffn_norm.weight | Block 27 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 338 | blk.27.ffn_up_exps.weight | Block 27 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | + +- Total elements in blk.27: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 28 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:-------| +| 339 | blk.28.attn_k.weight | Block 28 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 340 | blk.28.attn_k_norm.weight | Block 28 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 341 | blk.28.attn_norm.weight | Block 28 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 342 | blk.28.attn_output.weight | Block 28 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 343 | blk.28.attn_q.weight | Block 28 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_S | +| 344 | blk.28.attn_q_norm.weight | Block 28 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 345 | blk.28.attn_v.weight | Block 28 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ4_NL | +| 346 | blk.28.ffn_down_exps.weight | Block 28 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 347 | blk.28.ffn_gate_exps.weight | Block 28 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | +| 348 | blk.28.ffn_gate_inp.weight | Block 28 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 349 | blk.28.ffn_norm.weight | Block 28 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 350 | blk.28.ffn_up_exps.weight | Block 28 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | + +- Total elements in blk.28: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 29 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:-------| +| 351 | blk.29.attn_k.weight | Block 29 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 352 | blk.29.attn_k_norm.weight | Block 29 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 353 | blk.29.attn_norm.weight | Block 29 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 354 | blk.29.attn_output.weight | Block 29 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 355 | blk.29.attn_q.weight | Block 29 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_S | +| 356 | blk.29.attn_q_norm.weight | Block 29 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 357 | blk.29.attn_v.weight | Block 29 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ4_NL | +| 358 | blk.29.ffn_down_exps.weight | Block 29 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 359 | blk.29.ffn_gate_exps.weight | Block 29 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | +| 360 | blk.29.ffn_gate_inp.weight | Block 29 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 361 | blk.29.ffn_norm.weight | Block 29 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 362 | blk.29.ffn_up_exps.weight | Block 29 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | + +- Total elements in blk.29: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 30 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:-------| +| 363 | blk.30.attn_k.weight | Block 30 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 364 | blk.30.attn_k_norm.weight | Block 30 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 365 | blk.30.attn_norm.weight | Block 30 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 366 | blk.30.attn_output.weight | Block 30 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 367 | blk.30.attn_q.weight | Block 30 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_S | +| 368 | blk.30.attn_q_norm.weight | Block 30 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 369 | blk.30.attn_v.weight | Block 30 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ4_NL | +| 370 | blk.30.ffn_down_exps.weight | Block 30 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 371 | blk.30.ffn_gate_exps.weight | Block 30 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | +| 372 | blk.30.ffn_gate_inp.weight | Block 30 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 373 | blk.30.ffn_norm.weight | Block 30 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 374 | blk.30.ffn_up_exps.weight | Block 30 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | + +- Total elements in blk.30: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 31 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:-------| +| 375 | blk.31.attn_k.weight | Block 31 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 376 | blk.31.attn_k_norm.weight | Block 31 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 377 | blk.31.attn_norm.weight | Block 31 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 378 | blk.31.attn_output.weight | Block 31 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 379 | blk.31.attn_q.weight | Block 31 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_S | +| 380 | blk.31.attn_q_norm.weight | Block 31 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 381 | blk.31.attn_v.weight | Block 31 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ4_NL | +| 382 | blk.31.ffn_down_exps.weight | Block 31 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 383 | blk.31.ffn_gate_exps.weight | Block 31 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | +| 384 | blk.31.ffn_gate_inp.weight | Block 31 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 385 | blk.31.ffn_norm.weight | Block 31 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 386 | blk.31.ffn_up_exps.weight | Block 31 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | + +- Total elements in blk.31: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 32 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:-------| +| 387 | blk.32.attn_k.weight | Block 32 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 388 | blk.32.attn_k_norm.weight | Block 32 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 389 | blk.32.attn_norm.weight | Block 32 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 390 | blk.32.attn_output.weight | Block 32 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 391 | blk.32.attn_q.weight | Block 32 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_S | +| 392 | blk.32.attn_q_norm.weight | Block 32 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 393 | blk.32.attn_v.weight | Block 32 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ4_NL | +| 394 | blk.32.ffn_down_exps.weight | Block 32 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 395 | blk.32.ffn_gate_exps.weight | Block 32 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | +| 396 | blk.32.ffn_gate_inp.weight | Block 32 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 397 | blk.32.ffn_norm.weight | Block 32 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 398 | blk.32.ffn_up_exps.weight | Block 32 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | + +- Total elements in blk.32: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 33 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:-------| +| 399 | blk.33.attn_k.weight | Block 33 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 400 | blk.33.attn_k_norm.weight | Block 33 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 401 | blk.33.attn_norm.weight | Block 33 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 402 | blk.33.attn_output.weight | Block 33 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 403 | blk.33.attn_q.weight | Block 33 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_S | +| 404 | blk.33.attn_q_norm.weight | Block 33 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 405 | blk.33.attn_v.weight | Block 33 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ4_NL | +| 406 | blk.33.ffn_down_exps.weight | Block 33 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 407 | blk.33.ffn_gate_exps.weight | Block 33 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | +| 408 | blk.33.ffn_gate_inp.weight | Block 33 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 409 | blk.33.ffn_norm.weight | Block 33 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 410 | blk.33.ffn_up_exps.weight | Block 33 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | + +- Total elements in blk.33: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 34 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:-------| +| 411 | blk.34.attn_k.weight | Block 34 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 412 | blk.34.attn_k_norm.weight | Block 34 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 413 | blk.34.attn_norm.weight | Block 34 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 414 | blk.34.attn_output.weight | Block 34 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 415 | blk.34.attn_q.weight | Block 34 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_S | +| 416 | blk.34.attn_q_norm.weight | Block 34 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 417 | blk.34.attn_v.weight | Block 34 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ4_NL | +| 418 | blk.34.ffn_down_exps.weight | Block 34 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 419 | blk.34.ffn_gate_exps.weight | Block 34 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | +| 420 | blk.34.ffn_gate_inp.weight | Block 34 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 421 | blk.34.ffn_norm.weight | Block 34 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 422 | blk.34.ffn_up_exps.weight | Block 34 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | + +- Total elements in blk.34: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 35 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:-------| +| 423 | blk.35.attn_k.weight | Block 35 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 424 | blk.35.attn_k_norm.weight | Block 35 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 425 | blk.35.attn_norm.weight | Block 35 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 426 | blk.35.attn_output.weight | Block 35 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 427 | blk.35.attn_q.weight | Block 35 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_S | +| 428 | blk.35.attn_q_norm.weight | Block 35 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 429 | blk.35.attn_v.weight | Block 35 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ4_NL | +| 430 | blk.35.ffn_down_exps.weight | Block 35 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 431 | blk.35.ffn_gate_exps.weight | Block 35 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | +| 432 | blk.35.ffn_gate_inp.weight | Block 35 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 433 | blk.35.ffn_norm.weight | Block 35 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 434 | blk.35.ffn_up_exps.weight | Block 35 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | + +- Total elements in blk.35: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 36 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:-------| +| 435 | blk.36.attn_k.weight | Block 36 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 436 | blk.36.attn_k_norm.weight | Block 36 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 437 | blk.36.attn_norm.weight | Block 36 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 438 | blk.36.attn_output.weight | Block 36 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 439 | blk.36.attn_q.weight | Block 36 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_S | +| 440 | blk.36.attn_q_norm.weight | Block 36 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 441 | blk.36.attn_v.weight | Block 36 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ4_NL | +| 442 | blk.36.ffn_down_exps.weight | Block 36 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 443 | blk.36.ffn_gate_exps.weight | Block 36 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | +| 444 | blk.36.ffn_gate_inp.weight | Block 36 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 445 | blk.36.ffn_norm.weight | Block 36 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 446 | blk.36.ffn_up_exps.weight | Block 36 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | + +- Total elements in blk.36: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 37 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:-------| +| 447 | blk.37.attn_k.weight | Block 37 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 448 | blk.37.attn_k_norm.weight | Block 37 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 449 | blk.37.attn_norm.weight | Block 37 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 450 | blk.37.attn_output.weight | Block 37 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 451 | blk.37.attn_q.weight | Block 37 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_S | +| 452 | blk.37.attn_q_norm.weight | Block 37 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 453 | blk.37.attn_v.weight | Block 37 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ4_NL | +| 454 | blk.37.ffn_down_exps.weight | Block 37 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 455 | blk.37.ffn_gate_exps.weight | Block 37 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | +| 456 | blk.37.ffn_gate_inp.weight | Block 37 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 457 | blk.37.ffn_norm.weight | Block 37 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 458 | blk.37.ffn_up_exps.weight | Block 37 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | + +- Total elements in blk.37: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 38 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:-------| +| 459 | blk.38.attn_k.weight | Block 38 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 460 | blk.38.attn_k_norm.weight | Block 38 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 461 | blk.38.attn_norm.weight | Block 38 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 462 | blk.38.attn_output.weight | Block 38 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 463 | blk.38.attn_q.weight | Block 38 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_S | +| 464 | blk.38.attn_q_norm.weight | Block 38 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 465 | blk.38.attn_v.weight | Block 38 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ4_NL | +| 466 | blk.38.ffn_down_exps.weight | Block 38 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 467 | blk.38.ffn_gate_exps.weight | Block 38 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | +| 468 | blk.38.ffn_gate_inp.weight | Block 38 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 469 | blk.38.ffn_norm.weight | Block 38 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 470 | blk.38.ffn_up_exps.weight | Block 38 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | + +- Total elements in blk.38: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 39 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:-------| +| 471 | blk.39.attn_k.weight | Block 39 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 472 | blk.39.attn_k_norm.weight | Block 39 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 473 | blk.39.attn_norm.weight | Block 39 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 474 | blk.39.attn_output.weight | Block 39 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 475 | blk.39.attn_q.weight | Block 39 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_S | +| 476 | blk.39.attn_q_norm.weight | Block 39 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 477 | blk.39.attn_v.weight | Block 39 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ4_NL | +| 478 | blk.39.ffn_down_exps.weight | Block 39 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 479 | blk.39.ffn_gate_exps.weight | Block 39 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | +| 480 | blk.39.ffn_gate_inp.weight | Block 39 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 481 | blk.39.ffn_norm.weight | Block 39 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 482 | blk.39.ffn_up_exps.weight | Block 39 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | + +- Total elements in blk.39: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 40 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:-------| +| 483 | blk.40.attn_k.weight | Block 40 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 484 | blk.40.attn_k_norm.weight | Block 40 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 485 | blk.40.attn_norm.weight | Block 40 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 486 | blk.40.attn_output.weight | Block 40 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 487 | blk.40.attn_q.weight | Block 40 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_S | +| 488 | blk.40.attn_q_norm.weight | Block 40 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 489 | blk.40.attn_v.weight | Block 40 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ4_NL | +| 490 | blk.40.ffn_down_exps.weight | Block 40 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 491 | blk.40.ffn_gate_exps.weight | Block 40 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | +| 492 | blk.40.ffn_gate_inp.weight | Block 40 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 493 | blk.40.ffn_norm.weight | Block 40 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 494 | blk.40.ffn_up_exps.weight | Block 40 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | + +- Total elements in blk.40: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 41 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:-------| +| 495 | blk.41.attn_k.weight | Block 41 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 496 | blk.41.attn_k_norm.weight | Block 41 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 497 | blk.41.attn_norm.weight | Block 41 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 498 | blk.41.attn_output.weight | Block 41 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 499 | blk.41.attn_q.weight | Block 41 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_S | +| 500 | blk.41.attn_q_norm.weight | Block 41 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 501 | blk.41.attn_v.weight | Block 41 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ4_NL | +| 502 | blk.41.ffn_down_exps.weight | Block 41 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 503 | blk.41.ffn_gate_exps.weight | Block 41 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | +| 504 | blk.41.ffn_gate_inp.weight | Block 41 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 505 | blk.41.ffn_norm.weight | Block 41 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 506 | blk.41.ffn_up_exps.weight | Block 41 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | + +- Total elements in blk.41: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 42 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:-------| +| 507 | blk.42.attn_k.weight | Block 42 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 508 | blk.42.attn_k_norm.weight | Block 42 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 509 | blk.42.attn_norm.weight | Block 42 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 510 | blk.42.attn_output.weight | Block 42 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 511 | blk.42.attn_q.weight | Block 42 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_S | +| 512 | blk.42.attn_q_norm.weight | Block 42 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 513 | blk.42.attn_v.weight | Block 42 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ4_NL | +| 514 | blk.42.ffn_down_exps.weight | Block 42 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 515 | blk.42.ffn_gate_exps.weight | Block 42 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | +| 516 | blk.42.ffn_gate_inp.weight | Block 42 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 517 | blk.42.ffn_norm.weight | Block 42 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 518 | blk.42.ffn_up_exps.weight | Block 42 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | + +- Total elements in blk.42: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 43 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:-------| +| 519 | blk.43.attn_k.weight | Block 43 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 520 | blk.43.attn_k_norm.weight | Block 43 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 521 | blk.43.attn_norm.weight | Block 43 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 522 | blk.43.attn_output.weight | Block 43 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 523 | blk.43.attn_q.weight | Block 43 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_S | +| 524 | blk.43.attn_q_norm.weight | Block 43 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 525 | blk.43.attn_v.weight | Block 43 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ4_NL | +| 526 | blk.43.ffn_down_exps.weight | Block 43 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 527 | blk.43.ffn_gate_exps.weight | Block 43 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | +| 528 | blk.43.ffn_gate_inp.weight | Block 43 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 529 | blk.43.ffn_norm.weight | Block 43 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 530 | blk.43.ffn_up_exps.weight | Block 43 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | + +- Total elements in blk.43: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 44 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:-------| +| 531 | blk.44.attn_k.weight | Block 44 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 532 | blk.44.attn_k_norm.weight | Block 44 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 533 | blk.44.attn_norm.weight | Block 44 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 534 | blk.44.attn_output.weight | Block 44 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 535 | blk.44.attn_q.weight | Block 44 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_S | +| 536 | blk.44.attn_q_norm.weight | Block 44 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 537 | blk.44.attn_v.weight | Block 44 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ4_NL | +| 538 | blk.44.ffn_down_exps.weight | Block 44 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 539 | blk.44.ffn_gate_exps.weight | Block 44 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | +| 540 | blk.44.ffn_gate_inp.weight | Block 44 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 541 | blk.44.ffn_norm.weight | Block 44 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 542 | blk.44.ffn_up_exps.weight | Block 44 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | + +- Total elements in blk.44: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +### Block 45 Tensor Group : ~623M Elements + +| T_ID | Tensor Layer Name | Human Friendly Tensor Layer Name | Elements | Shape | Type | +|-----:|:----------------------------|:-------------------------------------------------------------------------------------------|:------------------|:----------------------|:-------| +| 543 | blk.45.attn_k.weight | Block 45 Attention Key (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ3_S | +| 544 | blk.45.attn_k_norm.weight | Block 45 Attn_K_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 545 | blk.45.attn_norm.weight | Block 45 Attention Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 546 | blk.45.attn_output.weight | Block 45 Attention Output (W) | ( ~8M) 8388608 | 4096 x 2048 x 1 x 1 | Q4_K | +| 547 | blk.45.attn_q.weight | Block 45 Attention Query (W) | ( ~8M) 8388608 | 2048 x 4096 x 1 x 1 | IQ3_S | +| 548 | blk.45.attn_q_norm.weight | Block 45 Attn_Q_Norm (W) | ( 128) 128 | 128 x 1 x 1 x 1 | F32 | +| 549 | blk.45.attn_v.weight | Block 45 Attention Value (W) | ( ~1M) 1048576 | 2048 x 512 x 1 x 1 | IQ4_NL | +| 550 | blk.45.ffn_down_exps.weight | Block 45 Ffn_Down_Exps (W) | (~201M) 201326592 | 768 x 2048 x 128 x 1 | IQ4_NL | +| 551 | blk.45.ffn_gate_exps.weight | Block 45 Ffn_Gate_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | +| 552 | blk.45.ffn_gate_inp.weight | Block 45 Expert-Routing Layer For The Feed-Forward Network In Mixture Of Expert Models (W) | (~262K) 262144 | 2048 x 128 x 1 x 1 | F32 | +| 553 | blk.45.ffn_norm.weight | Block 45 Feed-Forward Network Normalization (W) | ( ~2K) 2048 | 2048 x 1 x 1 x 1 | F32 | +| 554 | blk.45.ffn_up_exps.weight | Block 45 Ffn_Up_Exps (W) | (~201M) 201326592 | 2048 x 768 x 128 x 1 | IQ3_S | + +- Total elements in blk.45: (~623M) 623120640 +- Percentage of total elements: 2.13% + + +