eagle0504 commited on
Commit
f2f3210
·
verified ·
1 Parent(s): 3333566

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +144 -99
README.md CHANGED
@@ -1,199 +1,244 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
  - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
 
 
 
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
 
 
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
 
 
 
 
89
 
90
- [More Information Needed]
91
 
 
 
 
 
 
 
 
92
 
93
- #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
96
 
97
- #### Speeds, Sizes, Times [optional]
 
 
 
98
 
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
 
101
- [More Information Needed]
 
 
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
  ### Testing Data, Factors & Metrics
108
 
109
  #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
 
115
  #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
 
 
120
 
121
  #### Metrics
122
 
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
 
127
  ### Results
128
 
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
 
133
 
 
134
 
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
 
141
  ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
- [More Information Needed]
 
 
 
 
 
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
-
163
  #### Hardware
164
 
165
- [More Information Needed]
 
 
166
 
167
  #### Software
168
 
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
 
 
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
 
 
 
 
 
 
 
178
 
179
  **APA:**
180
 
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - video-classification
5
+ - vjepa2
6
+ - computer-vision
7
+ - video-understanding
8
+ - fine-tuned
9
+ - pytorch
10
  ---
11
 
12
+ # Model Card for VJEPA2 Fine-tuned Video Classification Model
 
 
 
13
 
14
+ This model is a fine-tuned version of Facebook's VJEPA2 (Video Joint Embedding Predictive Architecture) for video classification tasks. The model has been fine-tuned using gradient accumulation and frozen backbone techniques for efficient training.
15
 
16
  ## Model Details
17
 
18
  ### Model Description
19
 
20
+ This is a fine-tuned VJEPA2 model specifically adapted for video classification tasks. The model leverages the pre-trained VJEPA2 backbone with a custom classification head, trained using efficient fine-tuning techniques including backbone freezing and gradient accumulation.
 
 
 
 
 
 
 
 
 
 
21
 
22
+ - **Developed by:** Yiqiao Yin
23
+ - **Funded by:** Yiqiao Yin
24
+ - **Model type:** Video Classification
25
+ - **Language(s) (NLP):** English
26
+ - **License:** Apache 2.0
27
+ - **Finetuned from model:** qubvel-hf/vjepa2-vitl-fpc16-256-ssv2
28
 
29
+ ### Model Sources
30
 
31
  - **Repository:** [More Information Needed]
32
+ - **Paper:** [V-JEPA: Video Joint Embedding Predictive Architecture](https://arxiv.org/abs/2301.08243)
33
+ - **Base Model:** [qubvel-hf/vjepa2-vitl-fpc16-256-ssv2](https://huggingface.co/qubvel-hf/vjepa2-vitl-fpc16-256-ssv2)
34
 
35
  ## Uses
36
 
 
 
37
  ### Direct Use
38
 
39
+ This model can be directly used for video classification tasks. It processes video inputs and outputs class predictions based on the learned representations from the VJEPA2 backbone.
 
 
 
 
40
 
41
+ ### Downstream Use
42
 
43
+ The model can be further fine-tuned for specific video understanding tasks such as:
44
+ - Action recognition
45
+ - Video content classification
46
+ - Temporal activity detection
47
+ - Video scene understanding
48
 
49
  ### Out-of-Scope Use
50
 
51
+ This model is not intended for:
52
+ - Real-time video processing applications requiring sub-second inference
53
+ - High-resolution video analysis beyond the training resolution
54
+ - Audio-based video classification (visual features only)
55
+ - Video generation or synthesis tasks
56
 
57
  ## Bias, Risks, and Limitations
58
 
59
+ The model inherits biases from the original VJEPA2 pre-training data and may exhibit performance variations across different video domains, lighting conditions, and demographic representations in video content.
 
 
60
 
61
  ### Recommendations
62
 
63
+ Users should evaluate the model's performance on their specific use case and consider additional fine-tuning if the target domain differs significantly from the training data. Monitor for potential biases in video content classification across different demographic groups.
 
 
64
 
65
  ## How to Get Started with the Model
66
 
67
+ Use the code below to get started with the model:
68
+
69
+ ```python
70
+ import torch
71
+ from transformers import VJEPA2VideoProcessor, VJEPA2ForVideoClassification
72
+
73
+ # Load the model and processor
74
+ model_name = "qubvel-hf/vjepa2-vitl-fpc16-256-ssv2"
75
+ processor = VJEPA2VideoProcessor.from_pretrained(model_name)
76
+ model = VJEPA2ForVideoClassification.from_pretrained(
77
+ model_name,
78
+ torch_dtype=torch.float32,
79
+ label2id=label2id, # Your label mapping
80
+ id2label=id2label, # Your ID to label mapping
81
+ ignore_mismatched_sizes=True,
82
+ ).to("cuda")
83
+
84
+ # Process video and get predictions
85
+ inputs = processor(video_data, return_tensors="pt").to(model.device)
86
+ outputs = model(**inputs)
87
+ predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
88
+ ```
89
 
90
  ## Training Details
91
 
92
  ### Training Data
93
 
94
+ The model was fine-tuned on a custom video classification dataset. The specific dataset details depend on the user's implementation and target classification task.
 
 
95
 
96
  ### Training Procedure
97
 
98
+ #### Preprocessing
99
 
100
+ Videos are processed using the VJEPA2VideoProcessor, which handles:
101
+ - Video frame extraction and normalization
102
+ - Temporal sampling
103
+ - Spatial resizing and augmentation
104
+ - Tensor conversion for model input
105
 
106
+ #### Training Hyperparameters
107
 
108
+ - **Training regime:** FP32 precision
109
+ - **Optimizer:** Adam
110
+ - **Learning rate:** 1e-5
111
+ - **Epochs:** 5
112
+ - **Gradient accumulation steps:** 4
113
+ - **Backbone freezing:** VJEPA2 backbone parameters frozen, only classification head trained
114
+ - **Batch processing:** Gradient accumulation for effective larger batch size
115
 
116
+ #### Training Configuration
117
 
118
+ ```python
119
+ # Freeze backbone parameters
120
+ for param in model.vjepa2.parameters():
121
+ param.requires_grad = False
122
 
123
+ # Only train classification head
124
+ trainable = [p for p in model.parameters() if p.requires_grad]
125
+ optimizer = torch.optim.Adam(trainable, lr=1e-5)
126
+ ```
127
 
128
+ #### Speeds, Sizes, Times
129
 
130
+ - **Training time:** Depends on dataset size and hardware
131
+ - **GPU memory:** Optimized through gradient accumulation
132
+ - **Effective batch size:** Original batch size × 4 (due to gradient accumulation)
133
 
134
  ## Evaluation
135
 
 
 
136
  ### Testing Data, Factors & Metrics
137
 
138
  #### Testing Data
139
 
140
+ The model is evaluated on held-out test sets from the training dataset, with validation performed after each epoch.
 
 
141
 
142
  #### Factors
143
 
144
+ Evaluation considers:
145
+ - Video content diversity
146
+ - Temporal complexity
147
+ - Visual quality variations
148
+ - Classification difficulty across different classes
149
 
150
  #### Metrics
151
 
152
+ - **Primary metric:** Classification Accuracy
153
+ - **Validation:** Per-epoch validation accuracy
154
+ - **Final evaluation:** Test set accuracy
155
 
156
  ### Results
157
 
158
+ The model's performance is monitored through:
159
+ - Training loss progression with gradient accumulation
160
+ - Validation accuracy per epoch
161
+ - Final test accuracy
162
+ - TensorBoard logging for comprehensive monitoring
163
 
164
+ ## Model Examination
165
 
166
+ The model uses a frozen VJEPA2 backbone for feature extraction, with only the classification head being trained. This approach:
167
+ - Preserves pre-trained video understanding capabilities
168
+ - Reduces computational requirements
169
+ - Prevents overfitting on smaller datasets
170
+ - Enables efficient domain adaptation
171
 
172
  ## Environmental Impact
173
 
 
 
174
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
175
 
176
+ - **Hardware Type:** NVIDIA GPU (CUDA-enabled)
177
+ - **Hours used:** Dependent on dataset size and training configuration
178
+ - **Training efficiency:** Optimized through gradient accumulation and backbone freezing
179
+ - **Carbon Emitted:** Reduced due to efficient fine-tuning approach
 
180
 
181
+ ## Technical Specifications
182
 
183
  ### Model Architecture and Objective
184
 
185
+ - **Base Architecture:** VJEPA2 (Video Joint Embedding Predictive Architecture)
186
+ - **Model Size:** ViT-Large with 16-frame processing capability
187
+ - **Input Resolution:** 256x256 pixels
188
+ - **Temporal Sampling:** 16 frames per video
189
+ - **Classification Head:** Custom layer adapted to target classes
190
+ - **Objective:** Cross-entropy loss for multi-class classification
191
 
192
  ### Compute Infrastructure
193
 
 
 
194
  #### Hardware
195
 
196
+ - **GPU:** NVIDIA CUDA-compatible GPU
197
+ - **Memory:** Sufficient VRAM for model and gradient accumulation
198
+ - **Compute Capability:** CUDA support required
199
 
200
  #### Software
201
 
202
+ - **Framework:** PyTorch
203
+ - **Library:** Transformers (Hugging Face)
204
+ - **Dependencies:**
205
+ - torch
206
+ - transformers
207
+ - VJEPA2VideoProcessor
208
+ - VJEPA2ForVideoClassification
209
 
210
+ ## Citation
211
 
212
  **BibTeX:**
213
 
214
+ ```bibtex
215
+ @article{bardes2024vjepa,
216
+ title={V-JEPA: Video Joint Embedding Predictive Architecture},
217
+ author={Bardes, Adrien and Ponce, Jean and LeCun, Yann},
218
+ journal={arXiv preprint arXiv:2301.08243},
219
+ year={2024}
220
+ }
221
+ ```
222
 
223
  **APA:**
224
 
225
+ Bardes, A., Ponce, J., & LeCun, Y. (2024). V-JEPA: Video Joint Embedding Predictive Architecture. arXiv preprint arXiv:2301.08243.
 
 
226
 
227
+ ## Glossary
228
 
229
+ - **VJEPA2:** Video Joint Embedding Predictive Architecture, second version
230
+ - **Gradient Accumulation:** Technique to simulate larger batch sizes by accumulating gradients over multiple steps
231
+ - **Backbone Freezing:** Training strategy where pre-trained layers are frozen and only task-specific layers are trained
232
+ - **Video Classification:** Task of assigning categorical labels to video sequences
233
 
234
+ ## More Information
235
 
236
+ For more details on the VJEPA2 architecture and training methodology, refer to the original paper and the base model documentation.
237
 
238
+ ## Model Card Authors
239
 
240
+ Yiqiao Yin
241
 
242
  ## Model Card Contact
243
 
244
+ For questions or issues regarding this model, please contact the model author or create an issue in the model repository.