Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/_stable_baselines3_version +1 -1
- ppo-LunarLander-v2/data +23 -22
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +7 -7
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 261.92 +/- 20.57
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f043329b0d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f043329b160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f043329b1f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f043329b280>", "_build": "<function ActorCriticPolicy._build at 0x7f043329b310>", "forward": "<function ActorCriticPolicy.forward at 0x7f043329b3a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f043329b430>", "_predict": "<function ActorCriticPolicy._predict at 0x7f043329b4c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f043329b550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f043329b5e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f043329b670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0433296510>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 200704, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671759958358687009, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAJ0lNT+p+16+Gm0Vu8lOxzz9zjq8Bn1JvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9rLttDXLZkCUhpRSlIwBbJRNFwKMAXSUR0B5Njmr8zhxdX2UKGgGaAloD0MIJv4o6sxpSsCUhpRSlGgVTQ4CaBZHQHlGwR9PUKB1fZQoaAZoCWgPQwh/hGHAksNTQJSGlFKUaBVN6ANoFkdAeX5E61b7j3V9lChoBmgJaA9DCP1P/u6dAGVAlIaUUpRoFU0NAmgWR0B5j18Sf16FdX2UKGgGaAloD0MIN4yC4PEqakCUhpRSlGgVTbgCaBZHQHmlM6q814x1fZQoaAZoCWgPQwggeedQhvVTwJSGlFKUaBVNpQFoFkdAebCcpsoDxXV9lChoBmgJaA9DCJj4o6gzSGlAlIaUUpRoFU3VAWgWR0B51l2Pkq+bdX2UKGgGaAloD0MIWAIpsevnZkCUhpRSlGgVTYABaBZHQHnhbW3BpHt1fZQoaAZoCWgPQwjyCdl5G2ppQJSGlFKUaBVNZQJoFkdAefdZqVQhwHV9lChoBmgJaA9DCJRPj20ZfEPAlIaUUpRoFU13AWgWR0B6AKSntOVPdX2UKGgGaAloD0MIf4gNFs6OYUCUhpRSlGgVTaUCaBZHQHosPYWcjJN1fZQoaAZoCWgPQwg3je21oNNRwJSGlFKUaBVNsAFoFkdAejdBg/keZHV9lChoBmgJaA9DCFXejnDamGZAlIaUUpRoFU01AmgWR0B6R4tXgccVdX2UKGgGaAloD0MIiBHCo400bUCUhpRSlGgVTcQBaBZHQHpUjpLVWjp1fZQoaAZoCWgPQwim0HmNXYRMwJSGlFKUaBVNVAFoFkdAenR8stkFwHV9lChoBmgJaA9DCDBmS1ZFeFnAlIaUUpRoFU1kAWgWR0B6fcOYplSTdX2UKGgGaAloD0MI9phIaTYVVcCUhpRSlGgVTX4BaBZHQHqHrKNhmXh1fZQoaAZoCWgPQwjQ7Lq3ItVUwJSGlFKUaBVNmwFoFkdAepKtQ9A5aXV9lChoBmgJaA9DCDjAzHfwo2pAlIaUUpRoFU0lAmgWR0B6pCxptaZAdX2UKGgGaAloD0MIRiI0go0nP0CUhpRSlGgVTegDaBZHQHrcyQgcLjR1fZQoaAZoCWgPQwgWS5F8JehMwJSGlFKUaBVNWgFoFkdAeuWHM2WIGnV9lChoBmgJaA9DCJks7j8yT03AlIaUUpRoFU2IAWgWR0B67/k2gnMMdX2UKGgGaAloD0MILSP1nsohWcCUhpRSlGgVTVEBaBZHQHr5CqyWzGB1fZQoaAZoCWgPQwilTkAT4S1qQJSGlFKUaBVN6gFoFkdAex7bgCOmznV9lChoBmgJaA9DCL5qZcKvlGdAlIaUUpRoFU3XAWgWR0B7LbJEH+qBdX2UKGgGaAloD0MI5GVNLPCJbkCUhpRSlGgVTdYBaBZHQHs8Ms189fV1fZQoaAZoCWgPQwic+kDyzvpgQJSGlFKUaBVN6ANoFkdAe3VhrFfiP3V9lChoBmgJaA9DCBr9aDjlamZAlIaUUpRoFU2mAWgWR0B7gVcophF3dX2UKGgGaAloD0MIJLn8h/REXcCUhpRSlGgVTYUCaBZHQHuTjkIX0oV1fZQoaAZoCWgPQwhxcr9DUdNUwJSGlFKUaBVNXgFoFkdAe52KIznA7HV9lChoBmgJaA9DCBL27SSirGtAlIaUUpRoFU3zAWgWR0B7xY/HHWBjdX2UKGgGaAloD0MIjgHZ690xaECUhpRSlGgVTYECaBZHQHvfSmQ8wHt1fZQoaAZoCWgPQwjKarqeaO5pQJSGlFKUaBVN6QFoFkdAe+xRaHKwIXV9lChoBmgJaA9DCKDejJqvCmFAlIaUUpRoFU3tAWgWR0B7+nqFAVwhdX2UKGgGaAloD0MIPYIbKVtYSMCUhpRSlGgVTdABaBZHQHwhV3+uNgl1fZQoaAZoCWgPQwhG66hqgrA6wJSGlFKUaBVNgQFoFkdAfCufF72L53V9lChoBmgJaA9DCH2SO2yiBm5AlIaUUpRoFU3XAWgWR0B8OehVU+9rdX2UKGgGaAloD0MIxD4BFCNaX0CUhpRSlGgVTcoBaBZHQHxHs/+sHSp1fZQoaAZoCWgPQwi/Khcq/55mQJSGlFKUaBVNxgJoFkdAfHZ8A7xNI3V9lChoBmgJaA9DCOmcn+K4hmxAlIaUUpRoFU2zAWgWR0B8gw+fRNRFdX2UKGgGaAloD0MIF9S3zOn8QMCUhpRSlGgVTcMBaBZHQHyPgTZg5R11fZQoaAZoCWgPQwiDwMqhxXttQJSGlFKUaBVNyQFoFkdAfJ3cpb2US3V9lChoBmgJaA9DCHptNlbiT2ZAlIaUUpRoFU2FAWgWR0B8qIQ/X5FgdX2UKGgGaAloD0MIajANw0dcTsCUhpRSlGgVTVIBaBZHQHzJgw482aV1fZQoaAZoCWgPQwjdByC1iWFBwJSGlFKUaBVNjQFoFkdAfNQ2Dxsl9nV9lChoBmgJaA9DCOI+cmvSH0DAlIaUUpRoFU1xAWgWR0B83pwT/Q0GdX2UKGgGaAloD0MITZ6ymq4JZUCUhpRSlGgVTbwBaBZHQHzq45cTrVx1fZQoaAZoCWgPQwjz6EZYVEZoQJSGlFKUaBVNigFoFkdAfPWMFUyYX3V9lChoBmgJaA9DCAQ5KGEmeWtAlIaUUpRoFU2tAWgWR0B9Ge15Sm65dX2UKGgGaAloD0MISwM/qmG/7r+UhpRSlGgVTYoBaBZHQH0l1tKqXF91fZQoaAZoCWgPQwjj/46oUIBpQJSGlFKUaBVNowFoFkdAfTKIdlum8HV9lChoBmgJaA9DCJSD2QQYt1DAlIaUUpRoFU2KAWgWR0B9PMMy8BdVdX2UKGgGaAloD0MIRdeFHxx6akCUhpRSlGgVTbQBaBZHQH1KGu5jH4p1fZQoaAZoCWgPQwgTDyibcoFtQJSGlFKUaBVNkwJoFkdAfXgp2ECeVnV9lChoBmgJaA9DCOWzPA9uq21AlIaUUpRoFU2lAWgWR0B9gwaBI4EPdX2UKGgGaAloD0MIbM1WXvLBYkCUhpRSlGgVTaMCaBZHQH2VzzI3irF1fZQoaAZoCWgPQwhtj95wHyklwJSGlFKUaBVNdgFoFkdAfZ8EQoTfznV9lChoBmgJaA9DCAXAeAaNG2hAlIaUUpRoFU18AWgWR0B9wKDg62fDdX2UKGgGaAloD0MIhgK2gxGrWcCUhpRSlGgVTTYCaBZHQH3PEPxx1gZ1fZQoaAZoCWgPQwgPDCB8KHdmwJSGlFKUaBVNWAJoFkdAfd+aQ3gk1XV9lChoBmgJaA9DCD4GK061JFpAlIaUUpRoFU34AmgWR0B9+jrKNhmYdX2UKGgGaAloD0MI2ZjXEYfwWsCUhpRSlGgVTfwBaBZHQH4fTS5RTCN1fZQoaAZoCWgPQwhvS+SCM35NwJSGlFKUaBVNLgFoFkdAfica1kUbk3V9lChoBmgJaA9DCO+rcqFyeWtAlIaUUpRoFU22AWgWR0B+Mrkiliz+dX2UKGgGaAloD0MIqb2ItmNjbUCUhpRSlGgVTaoBaBZHQH49q+i8Fpx1fZQoaAZoCWgPQwjO+pRjMoFoQJSGlFKUaBVNxAFoFkdAfmIYZVGTcXV9lChoBmgJaA9DCBztuOF35FHAlIaUUpRoFU1BAWgWR0B+amotL+PzdX2UKGgGaAloD0MIonprYCtVZ0CUhpRSlGgVTasBaBZHQH539TkyULV1fZQoaAZoCWgPQwg+kpIehppoQJSGlFKUaBVNmAFoFkdAfocJWeYlY3V9lChoBmgJaA9DCK/S3XU2vFLAlIaUUpRoFU2fAWgWR0B+lNV2icoZdX2UKGgGaAloD0MIOKPmq+RjbECUhpRSlGgVTcIBaBZHQH7Dfh2nsLR1fZQoaAZoCWgPQwjy64fY4G9iQJSGlFKUaBVN6gFoFkdAftBEnLJSznV9lChoBmgJaA9DCB+5Nem2aDHAlIaUUpRoFUvpaBZHQH7VcKCxu891fZQoaAZoCWgPQwg6ArhZPH1oQJSGlFKUaBVNRAJoFkdAfuUhDw6QvHV9lChoBmgJaA9DCGraxTRTD21AlIaUUpRoFU2PAWgWR0B+75XRw6yTdX2UKGgGaAloD0MInaG4400fZECUhpRSlGgVTWgCaBZHQH8cC8nNPgx1fZQoaAZoCWgPQwhJ8lzfh0P9P5SGlFKUaBVNBgFoFkdAfyJmlZX+2nV9lChoBmgJaA9DCKHzGrtEkUnAlIaUUpRoFU1PAWgWR0B/KyrbQC0XdX2UKGgGaAloD0MIx549lylKZECUhpRSlGgVTXgCaBZHQH89N0aIeo11fZQoaAZoCWgPQwhhU+dRcQhrQJSGlFKUaBVNkQFoFkdAf0jYYBNmDnV9lChoBmgJaA9DCO2b+6tHEW1AlIaUUpRoFU36AWgWR0B/chzLfUF0dX2UKGgGaAloD0MI9kVCW069aECUhpRSlGgVTXgBaBZHQH98gVsUIs11fZQoaAZoCWgPQwi/DpwzolhoQJSGlFKUaBVN9gFoFkdAf4qnRsuWbHV9lChoBmgJaA9DCPoLPWL0G2dAlIaUUpRoFU2tAWgWR0B/l2seXAuadX2UKGgGaAloD0MIJV0z+WaZRMCUhpRSlGgVTSIBaBZHQH+e/Z7HAAR1fZQoaAZoCWgPQwgZ529CoRlsQJSGlFKUaBVNkgFoFkdAf8G1QIldC3V9lChoBmgJaA9DCN2VXTA4a2pAlIaUUpRoFU2NAWgWR0B/zWZUkv9MdX2UKGgGaAloD0MIlQ9B1WjIbECUhpRSlGgVTXABaBZHQH/XVKsdT5x1fZQoaAZoCWgPQwjQCgxZXfdpQJSGlFKUaBVNbwFoFkdAf+FUzsQd0nV9lChoBmgJaA9DCBGQL6FCMXBAlIaUUpRoFU1VAWgWR0B/6ktTUAktdX2UKGgGaAloD0MIo8nFGFgrNMCUhpRSlGgVS/hoFkdAgAQZQ53kgnV9lChoBmgJaA9DCFVNEHUfBELAlIaUUpRoFU1RAWgWR0CACGFNcnmadX2UKGgGaAloD0MIp804DdG6aUCUhpRSlGgVTY0BaBZHQIAONPva11J1fZQoaAZoCWgPQwgaU7DG2fTkv5SGlFKUaBVNOgFoFkdAgBImYSg5BHV9lChoBmgJaA9DCED4UKIly0rAlIaUUpRoFU2UAWgWR0CAF8gvlEJCdX2UKGgGaAloD0MI1VqYhTYDcECUhpRSlGgVTWUBaBZHQIAc1APd2xJ1fZQoaAZoCWgPQwhLzR5oBSJIwJSGlFKUaBVNQgFoFkdAgC0a9K28ZnV9lChoBmgJaA9DCIFfI0mQoGlAlIaUUpRoFU2XAWgWR0CAM/4Y77sOdX2UKGgGaAloD0MIWaMeotFgbUCUhpRSlGgVTXQBaBZHQIA5OR7qptJ1fZQoaAZoCWgPQwjncoOhDhJsQJSGlFKUaBVNdwJoFkdAgEQG4iHIqHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 980, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f95eac420d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f95eac42160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f95eac421f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f95eac42280>", "_build": "<function ActorCriticPolicy._build at 0x7f95eac42310>", "forward": "<function ActorCriticPolicy.forward at 0x7f95eac423a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f95eac42430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f95eac424c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f95eac42550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f95eac425e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f95eac42670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f95eac42700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f95eacb92a0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 2000896, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675888867686826581, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAO09Nj42gDq8gJ12vExRlzol8KO92kB4OwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVThAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAALWql05ZECUhpRSlIwBbJRNrAKMAXSUR0C0Zo0ulGgBdX2UKGgGaAloD0MIW9B7Y4g4cECUhpRSlGgVTREBaBZHQLRm7zeXRgJ1fZQoaAZoCWgPQwj3OqkvCxNwQJSGlFKUaBVL4GgWR0C0Zz2wmmcfdX2UKGgGaAloD0MIYp8AilGvcECUhpRSlGgVTQEBaBZHQLRpJNhE0BR1fZQoaAZoCWgPQwjdByC1yUJwQJSGlFKUaBVL9GgWR0C0aYF0YCQtdX2UKGgGaAloD0MIbJih8cSPbkCUhpRSlGgVS+poFkdAtGnUFxGUfXV9lChoBmgJaA9DCBhanZyhQHBAlIaUUpRoFUvzaBZHQLRqLShakh11fZQoaAZoCWgPQwi+FB40u9hxQJSGlFKUaBVNHwFoFkdAtGqc5R0lq3V9lChoBmgJaA9DCJgycEDLxW9AlIaUUpRoFU01AWgWR0C0azlivxH5dX2UKGgGaAloD0MIem6hK5GRcECUhpRSlGgVS9NoFkdAtGudvJiiI3V9lChoBmgJaA9DCBCVRsws3HBAlIaUUpRoFUv9aBZHQLRsFSq2jO91fZQoaAZoCWgPQwiMLQQ5KEdvQJSGlFKUaBVNQQFoFkdAtG8edH2AXnV9lChoBmgJaA9DCFNb6iAvKXBAlIaUUpRoFU01AmgWR0C0cDFUp/gBdX2UKGgGaAloD0MI/yCSIUfwbECUhpRSlGgVTQ0BaBZHQLRwoMJhOQB1fZQoaAZoCWgPQwigbTXrDOdwQJSGlFKUaBVNgQFoFkdAtHE51FH8THV9lChoBmgJaA9DCDWXGwx13DxAlIaUUpRoFUvbaBZHQLRxiYHgP3B1fZQoaAZoCWgPQwiLa3wm+1VkQJSGlFKUaBVN6ANoFkdAtHUEaaTfSHV9lChoBmgJaA9DCHjUmBDzyW5AlIaUUpRoFU0YAWgWR0C0dWrux8lYdX2UKGgGaAloD0MIy2Wjcz4icECUhpRSlGgVS/loFkdAtHXGQcPvrnV9lChoBmgJaA9DCCgNNQpJtGxAlIaUUpRoFU1EAWgWR0C0dkB1PnB+dX2UKGgGaAloD0MI56bNOI13bkCUhpRSlGgVTQABaBZHQLR2nZvkzXV1fZQoaAZoCWgPQwhCQ/8El+9vQJSGlFKUaBVNowFoFkdAtHjeYD1XeXV9lChoBmgJaA9DCG1zY3oCS3JAlIaUUpRoFU0nAWgWR0C0eVjB/I8ydX2UKGgGaAloD0MI/Wt55fryb0CUhpRSlGgVS+VoFkdAtHnHqyGBWnV9lChoBmgJaA9DCEjF/x3RFnBAlIaUUpRoFUvuaBZHQLR6Oi6xxDN1fZQoaAZoCWgPQwhU46WbxCgkQJSGlFKUaBVL8GgWR0C0eqd9H+ZPdX2UKGgGaAloD0MIfT1fs5zZcECUhpRSlGgVS+ZoFkdAtHsWWQfZEnV9lChoBmgJaA9DCAltOZdiuXBAlIaUUpRoFU1/AWgWR0C0e9xbW3BpdX2UKGgGaAloD0MIW2CPiZRGSUCUhpRSlGgVS6xoFkdAtHwxII4VAXV9lChoBmgJaA9DCG/XS1MEIGRAlIaUUpRoFU3oA2gWR0C0f+hKUVzqdX2UKGgGaAloD0MIo5HPKx7JakCUhpRSlGgVTQoCaBZHQLSAu9BKL891fZQoaAZoCWgPQwh3LLZJRa5wQJSGlFKUaBVL92gWR0C0gRR9oexOdX2UKGgGaAloD0MIJxJMNTPdZkCUhpRSlGgVTb8BaBZHQLSDYN0NjLB1fZQoaAZoCWgPQwjDt7Bu/BJwQJSGlFKUaBVNCQFoFkdAtIO9a0QbuXV9lChoBmgJaA9DCOBNt+yQJXJAlIaUUpRoFU1NAWgWR0C0hDoEbHZLdX2UKGgGaAloD0MIS+oENBHIb0CUhpRSlGgVS/1oFkdAtISQrf+CLHV9lChoBmgJaA9DCJZcxeK342tAlIaUUpRoFUv1aBZHQLSE5m65Gz91fZQoaAZoCWgPQwiSzVXzHNpvQJSGlFKUaBVL6mgWR0C0hTpuhsZYdX2UKGgGaAloD0MIweCaO3r9cUCUhpRSlGgVTQ8BaBZHQLSFlre67NB1fZQoaAZoCWgPQwhcyY6NQNxFQJSGlFKUaBVLqGgWR0C0hc5+YtxudX2UKGgGaAloD0MIWOatug6Ib0CUhpRSlGgVTTsBaBZHQLSH0LVFx4p1fZQoaAZoCWgPQwhHHogsUgRxQJSGlFKUaBVL6WgWR0C0iEEnTiKjdX2UKGgGaAloD0MIHlGhujlTbECUhpRSlGgVTQwBaBZHQLSIwSLZSNx1fZQoaAZoCWgPQwjAIypUN71AQJSGlFKUaBVL1mgWR0C0iSYkzGgjdX2UKGgGaAloD0MI/mFLj6b8bkCUhpRSlGgVTZ0BaBZHQLSKIj1PFeh1fZQoaAZoCWgPQwjQZP88DWQ9QJSGlFKUaBVL5mgWR0C0ipRc3VCpdX2UKGgGaAloD0MIRYR/ETSebECUhpRSlGgVS/JoFkdAtIsRAWzninV9lChoBmgJaA9DCJBpbRpbmnBAlIaUUpRoFUvzaBZHQLSLkmkWRA91fZQoaAZoCWgPQwiTHLCrSVRuQJSGlFKUaBVN1gFoFkdAtI4idJ8OTnV9lChoBmgJaA9DCK2E7pL4NnFAlIaUUpRoFU1LAWgWR0C0jqOcYqG2dX2UKGgGaAloD0MIc7nBUAetb0CUhpRSlGgVS/9oFkdAtI8AOqebu3V9lChoBmgJaA9DCMvXZfjP+HFAlIaUUpRoFUvmaBZHQLSPWd7OVxF1fZQoaAZoCWgPQwhXCKuxhHxwQJSGlFKUaBVL7GgWR0C0j6uZTho/dX2UKGgGaAloD0MIJo+n5YeGa0CUhpRSlGgVS/loFkdAtJAFd+ocaXV9lChoBmgJaA9DCPlLi/okhxrAlIaUUpRoFUv/aBZHQLSQZkTHsC11fZQoaAZoCWgPQwijQJ/IEy5sQJSGlFKUaBVL/WgWR0C0klJ3LV4HdX2UKGgGaAloD0MI+ie4WFF/cECUhpRSlGgVTdoBaBZHQLSTIzHCGet1fZQoaAZoCWgPQwj6RQn6C1RvQJSGlFKUaBVL9WgWR0C0k3rRfF72dX2UKGgGaAloD0MIXYqryr53XkCUhpRSlGgVTegDaBZHQLSVeqLjxTd1fZQoaAZoCWgPQwhv1uB9FQBwQJSGlFKUaBVNMQFoFkdAtJfPrrxAjnV9lChoBmgJaA9DCGK7e4AuLXBAlIaUUpRoFU0IAWgWR0C0mFiT6i0wdX2UKGgGaAloD0MIsMqFyj9vcECUhpRSlGgVTTABaBZHQLSY/IKc/dJ1fZQoaAZoCWgPQwiwH2KDBVFvQJSGlFKUaBVNCAFoFkdAtJmK8WbgCXV9lChoBmgJaA9DCM5SspyEHjvAlIaUUpRoFUv2aBZHQLSaCyQxN7B1fZQoaAZoCWgPQwiJQPUPotBwQJSGlFKUaBVNEgFoFkdAtJqU+5e7c3V9lChoBmgJaA9DCNXt7CuPc2NAlIaUUpRoFU3oA2gWR0C0ndVqWToudX2UKGgGaAloD0MINNWT+Yf1cECUhpRSlGgVS+JoFkdAtJ4j3JxNqXV9lChoBmgJaA9DCCocQSrFCWpAlIaUUpRoFU3wAWgWR0C0nwI7Rv3rdX2UKGgGaAloD0MI6iPwh58bcECUhpRSlGgVS/doFkdAtJ9e3qiXY3V9lChoBmgJaA9DCLNAu0MKsW9AlIaUUpRoFUviaBZHQLSfrTNt65Z1fZQoaAZoCWgPQwhDrtSz4GRyQJSGlFKUaBVNWwFoFkdAtKAr6dlNDnV9lChoBmgJaA9DCKpiKv1E+XFAlIaUUpRoFU1zAWgWR0C0ojps0pEydX2UKGgGaAloD0MIAHDs2fO3cECUhpRSlGgVS/VoFkdAtKKPQBxPwnV9lChoBmgJaA9DCA/VlGSdrXFAlIaUUpRoFUv/aBZHQLSi5mrKeTV1fZQoaAZoCWgPQwijHw2nzPxvQJSGlFKUaBVNOgFoFkdAtKNbPKMefnV9lChoBmgJaA9DCLwi+N/Kum1AlIaUUpRoFU02AWgWR0C0o87tzCDVdX2UKGgGaAloD0MIv56vWa5ubUCUhpRSlGgVTbgBaBZHQLSkdLhaTwF1fZQoaAZoCWgPQwiQvknToP1wQJSGlFKUaBVNTQFoFkdAtKcmHCXQdHV9lChoBmgJaA9DCCbirfNvN0hAlIaUUpRoFUuUaBZHQLSnbhBJI2B1fZQoaAZoCWgPQwhNE7afjNEXwJSGlFKUaBVL/WgWR0C0p/Vpfx+bdX2UKGgGaAloD0MIJsXHJyQIcECUhpRSlGgVS+doFkdAtKhnmEGqxXV9lChoBmgJaA9DCM78ag4QLkZAlIaUUpRoFUu7aBZHQLSowmKIi1R1fZQoaAZoCWgPQwiXGwx1WAhwQJSGlFKUaBVL6GgWR0C0qTsgIQe4dX2UKGgGaAloD0MI2XqGcMzHb0CUhpRSlGgVS+VoFkdAtKmrW6K+BnV9lChoBmgJaA9DCN5VD5iH615AlIaUUpRoFU3oA2gWR0C0roDUiILxdX2UKGgGaAloD0MI4lrtYS90XECUhpRSlGgVTegDaBZHQLSwb/ag2611fZQoaAZoCWgPQwhXdsHgmtM1wJSGlFKUaBVL4WgWR0C0sLzOxB3SdX2UKGgGaAloD0MIjGX6JeL1cUCUhpRSlGgVS/RoFkdAtLEP3ztkWnV9lChoBmgJaA9DCJ7Q608iG3BAlIaUUpRoFUv2aBZHQLSxZld1Mdt1fZQoaAZoCWgPQwgyxofZiwxxQJSGlFKUaBVL8GgWR0C0s1KtLcsUdX2UKGgGaAloD0MIHLRXH4/gb0CUhpRSlGgVS+5oFkdAtLPAiV0LdHV9lChoBmgJaA9DCKrv/KIE6G9AlIaUUpRoFUvyaBZHQLS0MFAmiQF1fZQoaAZoCWgPQwhselBQirYswJSGlFKUaBVL82gWR0C0tJuSGJvYdX2UKGgGaAloD0MIPs40YfttXECUhpRSlGgVTegDaBZHQLS3D+MqBmR1fZQoaAZoCWgPQwiDaK1o8zFtQJSGlFKUaBVNDQFoFkdAtLk4ornTzHV9lChoBmgJaA9DCHDSNCgaTHFAlIaUUpRoFUv8aBZHQLS5jq+Jxed1fZQoaAZoCWgPQwgWvr7WpcRsQJSGlFKUaBVL82gWR0C0ueCbhFVldX2UKGgGaAloD0MIQUmBBTDjcECUhpRSlGgVTTcBaBZHQLS6WnoxHoZ1fZQoaAZoCWgPQwgw1jcwOQltQJSGlFKUaBVNCQFoFkdAtLq1/8VHnXV9lChoBmgJaA9DCAlP6PWnBnFAlIaUUpRoFU0YAWgWR0C0ux6hpQDWdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 9770, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51c3d07e4cc9db2ed14f5fe692c48b0a4323c620930bdea1183159489044b0f5
|
3 |
+
size 146697
|
ppo-LunarLander-v2/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
1.
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
CHANGED
@@ -3,20 +3,21 @@
|
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
-
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"
|
14 |
-
"
|
15 |
-
"
|
16 |
-
"
|
17 |
-
"
|
|
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -42,21 +43,21 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 1,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,16 +67,16 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 2048,
|
80 |
"gamma": 0.99,
|
81 |
"gae_lambda": 0.95,
|
@@ -86,7 +87,7 @@
|
|
86 |
"n_epochs": 10,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+
|
90 |
},
|
91 |
"clip_range_vf": null,
|
92 |
"normalize_advantage": true,
|
|
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f95eac420d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f95eac42160>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f95eac421f0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f95eac42280>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f95eac42310>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f95eac423a0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f95eac42430>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f95eac424c0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f95eac42550>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f95eac425e0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f95eac42670>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f95eac42700>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f95eacb92a0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 1,
|
46 |
+
"num_timesteps": 2000896,
|
47 |
+
"_total_timesteps": 2000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1675888867686826581,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAO09Nj42gDq8gJ12vExRlzol8KO92kB4OwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.00044800000000000395,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVThAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAALWql05ZECUhpRSlIwBbJRNrAKMAXSUR0C0Zo0ulGgBdX2UKGgGaAloD0MIW9B7Y4g4cECUhpRSlGgVTREBaBZHQLRm7zeXRgJ1fZQoaAZoCWgPQwj3OqkvCxNwQJSGlFKUaBVL4GgWR0C0Zz2wmmcfdX2UKGgGaAloD0MIYp8AilGvcECUhpRSlGgVTQEBaBZHQLRpJNhE0BR1fZQoaAZoCWgPQwjdByC1yUJwQJSGlFKUaBVL9GgWR0C0aYF0YCQtdX2UKGgGaAloD0MIbJih8cSPbkCUhpRSlGgVS+poFkdAtGnUFxGUfXV9lChoBmgJaA9DCBhanZyhQHBAlIaUUpRoFUvzaBZHQLRqLShakh11fZQoaAZoCWgPQwi+FB40u9hxQJSGlFKUaBVNHwFoFkdAtGqc5R0lq3V9lChoBmgJaA9DCJgycEDLxW9AlIaUUpRoFU01AWgWR0C0azlivxH5dX2UKGgGaAloD0MIem6hK5GRcECUhpRSlGgVS9NoFkdAtGudvJiiI3V9lChoBmgJaA9DCBCVRsws3HBAlIaUUpRoFUv9aBZHQLRsFSq2jO91fZQoaAZoCWgPQwiMLQQ5KEdvQJSGlFKUaBVNQQFoFkdAtG8edH2AXnV9lChoBmgJaA9DCFNb6iAvKXBAlIaUUpRoFU01AmgWR0C0cDFUp/gBdX2UKGgGaAloD0MI/yCSIUfwbECUhpRSlGgVTQ0BaBZHQLRwoMJhOQB1fZQoaAZoCWgPQwigbTXrDOdwQJSGlFKUaBVNgQFoFkdAtHE51FH8THV9lChoBmgJaA9DCDWXGwx13DxAlIaUUpRoFUvbaBZHQLRxiYHgP3B1fZQoaAZoCWgPQwiLa3wm+1VkQJSGlFKUaBVN6ANoFkdAtHUEaaTfSHV9lChoBmgJaA9DCHjUmBDzyW5AlIaUUpRoFU0YAWgWR0C0dWrux8lYdX2UKGgGaAloD0MIy2Wjcz4icECUhpRSlGgVS/loFkdAtHXGQcPvrnV9lChoBmgJaA9DCCgNNQpJtGxAlIaUUpRoFU1EAWgWR0C0dkB1PnB+dX2UKGgGaAloD0MI56bNOI13bkCUhpRSlGgVTQABaBZHQLR2nZvkzXV1fZQoaAZoCWgPQwhCQ/8El+9vQJSGlFKUaBVNowFoFkdAtHjeYD1XeXV9lChoBmgJaA9DCG1zY3oCS3JAlIaUUpRoFU0nAWgWR0C0eVjB/I8ydX2UKGgGaAloD0MI/Wt55fryb0CUhpRSlGgVS+VoFkdAtHnHqyGBWnV9lChoBmgJaA9DCEjF/x3RFnBAlIaUUpRoFUvuaBZHQLR6Oi6xxDN1fZQoaAZoCWgPQwhU46WbxCgkQJSGlFKUaBVL8GgWR0C0eqd9H+ZPdX2UKGgGaAloD0MIfT1fs5zZcECUhpRSlGgVS+ZoFkdAtHsWWQfZEnV9lChoBmgJaA9DCAltOZdiuXBAlIaUUpRoFU1/AWgWR0C0e9xbW3BpdX2UKGgGaAloD0MIW2CPiZRGSUCUhpRSlGgVS6xoFkdAtHwxII4VAXV9lChoBmgJaA9DCG/XS1MEIGRAlIaUUpRoFU3oA2gWR0C0f+hKUVzqdX2UKGgGaAloD0MIo5HPKx7JakCUhpRSlGgVTQoCaBZHQLSAu9BKL891fZQoaAZoCWgPQwh3LLZJRa5wQJSGlFKUaBVL92gWR0C0gRR9oexOdX2UKGgGaAloD0MIJxJMNTPdZkCUhpRSlGgVTb8BaBZHQLSDYN0NjLB1fZQoaAZoCWgPQwjDt7Bu/BJwQJSGlFKUaBVNCQFoFkdAtIO9a0QbuXV9lChoBmgJaA9DCOBNt+yQJXJAlIaUUpRoFU1NAWgWR0C0hDoEbHZLdX2UKGgGaAloD0MIS+oENBHIb0CUhpRSlGgVS/1oFkdAtISQrf+CLHV9lChoBmgJaA9DCJZcxeK342tAlIaUUpRoFUv1aBZHQLSE5m65Gz91fZQoaAZoCWgPQwiSzVXzHNpvQJSGlFKUaBVL6mgWR0C0hTpuhsZYdX2UKGgGaAloD0MIweCaO3r9cUCUhpRSlGgVTQ8BaBZHQLSFlre67NB1fZQoaAZoCWgPQwhcyY6NQNxFQJSGlFKUaBVLqGgWR0C0hc5+YtxudX2UKGgGaAloD0MIWOatug6Ib0CUhpRSlGgVTTsBaBZHQLSH0LVFx4p1fZQoaAZoCWgPQwhHHogsUgRxQJSGlFKUaBVL6WgWR0C0iEEnTiKjdX2UKGgGaAloD0MIHlGhujlTbECUhpRSlGgVTQwBaBZHQLSIwSLZSNx1fZQoaAZoCWgPQwjAIypUN71AQJSGlFKUaBVL1mgWR0C0iSYkzGgjdX2UKGgGaAloD0MI/mFLj6b8bkCUhpRSlGgVTZ0BaBZHQLSKIj1PFeh1fZQoaAZoCWgPQwjQZP88DWQ9QJSGlFKUaBVL5mgWR0C0ipRc3VCpdX2UKGgGaAloD0MIRYR/ETSebECUhpRSlGgVS/JoFkdAtIsRAWzninV9lChoBmgJaA9DCJBpbRpbmnBAlIaUUpRoFUvzaBZHQLSLkmkWRA91fZQoaAZoCWgPQwiTHLCrSVRuQJSGlFKUaBVN1gFoFkdAtI4idJ8OTnV9lChoBmgJaA9DCK2E7pL4NnFAlIaUUpRoFU1LAWgWR0C0jqOcYqG2dX2UKGgGaAloD0MIc7nBUAetb0CUhpRSlGgVS/9oFkdAtI8AOqebu3V9lChoBmgJaA9DCMvXZfjP+HFAlIaUUpRoFUvmaBZHQLSPWd7OVxF1fZQoaAZoCWgPQwhXCKuxhHxwQJSGlFKUaBVL7GgWR0C0j6uZTho/dX2UKGgGaAloD0MIJo+n5YeGa0CUhpRSlGgVS/loFkdAtJAFd+ocaXV9lChoBmgJaA9DCPlLi/okhxrAlIaUUpRoFUv/aBZHQLSQZkTHsC11fZQoaAZoCWgPQwijQJ/IEy5sQJSGlFKUaBVL/WgWR0C0klJ3LV4HdX2UKGgGaAloD0MI+ie4WFF/cECUhpRSlGgVTdoBaBZHQLSTIzHCGet1fZQoaAZoCWgPQwj6RQn6C1RvQJSGlFKUaBVL9WgWR0C0k3rRfF72dX2UKGgGaAloD0MIXYqryr53XkCUhpRSlGgVTegDaBZHQLSVeqLjxTd1fZQoaAZoCWgPQwhv1uB9FQBwQJSGlFKUaBVNMQFoFkdAtJfPrrxAjnV9lChoBmgJaA9DCGK7e4AuLXBAlIaUUpRoFU0IAWgWR0C0mFiT6i0wdX2UKGgGaAloD0MIsMqFyj9vcECUhpRSlGgVTTABaBZHQLSY/IKc/dJ1fZQoaAZoCWgPQwiwH2KDBVFvQJSGlFKUaBVNCAFoFkdAtJmK8WbgCXV9lChoBmgJaA9DCM5SspyEHjvAlIaUUpRoFUv2aBZHQLSaCyQxN7B1fZQoaAZoCWgPQwiJQPUPotBwQJSGlFKUaBVNEgFoFkdAtJqU+5e7c3V9lChoBmgJaA9DCNXt7CuPc2NAlIaUUpRoFU3oA2gWR0C0ndVqWToudX2UKGgGaAloD0MINNWT+Yf1cECUhpRSlGgVS+JoFkdAtJ4j3JxNqXV9lChoBmgJaA9DCCocQSrFCWpAlIaUUpRoFU3wAWgWR0C0nwI7Rv3rdX2UKGgGaAloD0MI6iPwh58bcECUhpRSlGgVS/doFkdAtJ9e3qiXY3V9lChoBmgJaA9DCLNAu0MKsW9AlIaUUpRoFUviaBZHQLSfrTNt65Z1fZQoaAZoCWgPQwhDrtSz4GRyQJSGlFKUaBVNWwFoFkdAtKAr6dlNDnV9lChoBmgJaA9DCKpiKv1E+XFAlIaUUpRoFU1zAWgWR0C0ojps0pEydX2UKGgGaAloD0MIAHDs2fO3cECUhpRSlGgVS/VoFkdAtKKPQBxPwnV9lChoBmgJaA9DCA/VlGSdrXFAlIaUUpRoFUv/aBZHQLSi5mrKeTV1fZQoaAZoCWgPQwijHw2nzPxvQJSGlFKUaBVNOgFoFkdAtKNbPKMefnV9lChoBmgJaA9DCLwi+N/Kum1AlIaUUpRoFU02AWgWR0C0o87tzCDVdX2UKGgGaAloD0MIv56vWa5ubUCUhpRSlGgVTbgBaBZHQLSkdLhaTwF1fZQoaAZoCWgPQwiQvknToP1wQJSGlFKUaBVNTQFoFkdAtKcmHCXQdHV9lChoBmgJaA9DCCbirfNvN0hAlIaUUpRoFUuUaBZHQLSnbhBJI2B1fZQoaAZoCWgPQwhNE7afjNEXwJSGlFKUaBVL/WgWR0C0p/Vpfx+bdX2UKGgGaAloD0MIJsXHJyQIcECUhpRSlGgVS+doFkdAtKhnmEGqxXV9lChoBmgJaA9DCM78ag4QLkZAlIaUUpRoFUu7aBZHQLSowmKIi1R1fZQoaAZoCWgPQwiXGwx1WAhwQJSGlFKUaBVL6GgWR0C0qTsgIQe4dX2UKGgGaAloD0MI2XqGcMzHb0CUhpRSlGgVS+VoFkdAtKmrW6K+BnV9lChoBmgJaA9DCN5VD5iH615AlIaUUpRoFU3oA2gWR0C0roDUiILxdX2UKGgGaAloD0MI4lrtYS90XECUhpRSlGgVTegDaBZHQLSwb/ag2611fZQoaAZoCWgPQwhXdsHgmtM1wJSGlFKUaBVL4WgWR0C0sLzOxB3SdX2UKGgGaAloD0MIjGX6JeL1cUCUhpRSlGgVS/RoFkdAtLEP3ztkWnV9lChoBmgJaA9DCJ7Q608iG3BAlIaUUpRoFUv2aBZHQLSxZld1Mdt1fZQoaAZoCWgPQwgyxofZiwxxQJSGlFKUaBVL8GgWR0C0s1KtLcsUdX2UKGgGaAloD0MIHLRXH4/gb0CUhpRSlGgVS+5oFkdAtLPAiV0LdHV9lChoBmgJaA9DCKrv/KIE6G9AlIaUUpRoFUvyaBZHQLS0MFAmiQF1fZQoaAZoCWgPQwhselBQirYswJSGlFKUaBVL82gWR0C0tJuSGJvYdX2UKGgGaAloD0MIPs40YfttXECUhpRSlGgVTegDaBZHQLS3D+MqBmR1fZQoaAZoCWgPQwiDaK1o8zFtQJSGlFKUaBVNDQFoFkdAtLk4ornTzHV9lChoBmgJaA9DCHDSNCgaTHFAlIaUUpRoFUv8aBZHQLS5jq+Jxed1fZQoaAZoCWgPQwgWvr7WpcRsQJSGlFKUaBVL82gWR0C0ueCbhFVldX2UKGgGaAloD0MIQUmBBTDjcECUhpRSlGgVTTcBaBZHQLS6WnoxHoZ1fZQoaAZoCWgPQwgw1jcwOQltQJSGlFKUaBVNCQFoFkdAtLq1/8VHnXV9lChoBmgJaA9DCAlP6PWnBnFAlIaUUpRoFU0YAWgWR0C0ux6hpQDWdWUu"
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 9770,
|
80 |
"n_steps": 2048,
|
81 |
"gamma": 0.99,
|
82 |
"gae_lambda": 0.95,
|
|
|
87 |
"n_epochs": 10,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89a5fa2c69dfcfd6706d27b788453f8635c61816a45915d57d3e92f8a459980a
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:762d4280f6123a55bb9ce39ef92855c011f530644c4cf07dd226ae2b0c9b1940
|
3 |
+
size 43393
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
OS: Linux-5.10.
|
2 |
-
Python: 3.8.
|
3 |
-
Stable-Baselines3: 1.
|
4 |
-
PyTorch: 1.13.
|
5 |
-
GPU Enabled: True
|
6 |
-
Numpy: 1.21.6
|
7 |
-
Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 261.92045412880384, "std_reward": 20.57150854067709, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-08T22:11:57.778823"}
|