--- base_model: openai/whisper-large-v3-turbo library_name: transformers license: apache-2.0 pipeline_tag: automatic-speech-recognition tags: - audio - automatic-speech-recognition - whisper - hf-asr-leaderboard --- # Model Card for Lite-Whisper large-v3-turbo-acc Lite-Whisper is a compressed version of OpenAI Whisper with LiteASR. See our [GitHub repository](https://github.com/efeslab/LiteASR) and [paper](https://arxiv.org/abs/2502.20583) for details. ## Benchmark Results Following is the average word error rate (WER) evaluated on the [ESB datasets](https://huggingface.co/datasets/hf-audio/esb-datasets-test-only-sorted): | Model | Average WER (↓) | Encoder Size | Decoder Size | |-------|----------------|--------------|--------------| | [whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) | 10.1 | 635M | 907M | | [lite-whisper-large-v3-acc](https://huggingface.co/efficient-speech/lite-whisper-large-v3-acc) | 10.1 | 429M | 907M | | [lite-whisper-large-v3](https://huggingface.co/efficient-speech/lite-whisper-large-v3) | 10.2 | 377M | 907M | | [lite-whisper-large-v3-fast](https://huggingface.co/efficient-speech/lite-whisper-large-v3-fast) | 11.3 | 308M | 907M | |   |   |   |   | | [whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) | 10.1 | 635M | 172M | | [lite-whisper-large-v3-turbo-acc](https://huggingface.co/efficient-speech/lite-whisper-large-v3-turbo-acc) | 10.2 | 421M | 172M | | [lite-whisper-large-v3-turbo](https://huggingface.co/efficient-speech/lite-whisper-large-v3-turbo) | 12.6 | 374M | 172M | | [lite-whisper-large-v3-turbo-fast](https://huggingface.co/efficient-speech/lite-whisper-large-v3-turbo-fast) | 20.1 | 313M | 172M | |   |   |   |   | | [whisper-medium](https://huggingface.co/openai/whisper-medium) | 14.8 | 306M | 457M | ## Quick Start The easiest way to run our model is to use our integration with HuggingFace Transformers library. We provide model weights for the compressed version of OpenAI Whisper series [here](https://huggingface.co/efficient-speech). ```python import librosa import torch from transformers import AutoProcessor, AutoModel device = "cuda:0" dtype = torch.float16 # load the compressed Whisper model model = AutoModel.from_pretrained( "efficient-speech/lite-whisper-large-v3-turbo", trust_remote_code=True, ) model.to(dtype).to(device) # we use the same processor as the original model processor = AutoProcessor.from_pretrained("openai/whisper-large-v3") # set the path to your audio file path = "path/to/audio.wav" audio, _ = librosa.load(path, sr=16000) input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features input_features = input_features.to(dtype).to(device) predicted_ids = model.generate(input_features) transcription = processor.batch_decode( predicted_ids, skip_special_tokens=True )[0] print(transcription) ``` ## Citation If you use LiteASR in your research, please cite the following paper: ``` @misc{kamahori2025liteasrefficientautomaticspeech, title={LiteASR: Efficient Automatic Speech Recognition with Low-Rank Approximation}, author={Keisuke Kamahori and Jungo Kasai and Noriyuki Kojima and Baris Kasikci}, year={2025}, eprint={2502.20583}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2502.20583}, } ```