--- language: - en license: bsd-3-clause tags: - arxiv:2506.23151 - optical-flow-estimation pipeline_tag: image-to-image library_name: pytorch base_model: - egorchistov/MEMFOF-Tartan-T --- # MEMFOF-Tartan-T-TSKH 📄 Paper | 🌐 Project Page | 💻 Code | 🚀 Colab | 🤗 Demo 🔍 This is a MEMFOF checkpoint trained from **MEMFOF-Tartan-T** on the combination of **FlyingThings3D, Sintel, KITTI, and HD1K** datasets. ✅ **Note:** This model is intended **for real-world videos** — it is trained with **higher diversity and robustness** in mind. ## 🛠️ Usage ```shell git clone https://github.com/msu-video-group/memfof.git cd memfof pip3 install -r requirements.txt ``` ```python import torch from core.memfof import MEMFOF device = "cuda" if torch.cuda.is_available() else "cpu" model = MEMFOF.from_pretrained("egorchistov/MEMFOF-Tartan-T-TSKH").eval().to(device) with torch.inference_mode(): example_input = torch.randint(0, 256, [1, 3, 3, 1080, 1920], device=device) # [B=1, T=3, C=3, H=1080, W=1920] backward_flow, forward_flow = model(example_input)["flow"][-1].unbind(dim=1) # [B=1, C=2, H=1080, W=1920] ``` ## 📚 Citation ``` @article{bargatin2025memfof, title={MEMFOF: High-Resolution Training for Memory-Efficient Multi-Frame Optical Flow Estimation}, author={Bargatin, Vladislav and Chistov, Egor and Yakovenko, Alexander and Vatolin, Dmitriy}, journal={arXiv preprint arXiv:2506.23151}, year={2025} } ```